緒論:寫作既是個人情感的抒發,也是對學術真理的探索,歡迎閱讀由發表云整理的11篇數學思維策略的基本原理范文,希望它們能為您的寫作提供參考和啟發。
1.懂得基本原理使學科知識更容易理解
心理學認為,“由于認知結構中原有的有關觀念在包攝和概括水平上高于新學習的知識,因而新知識與舊知識所構成的這種類屬關系可稱為下位關系,這種學習便稱為下位學習。”下位學習具有足夠的穩定性,有利于牢固地固定新學知識的意義,使新知識能夠較順利地納入到學生已有的認知結構中去。學生學習了數學思想方法就能夠更好地理解和掌握數學內容。
2.懂得基本原理有利于記憶知識
布魯納認為,“除非把一件件事情放進構造得好的模型里面,否則很快就會忘記。”學習基本原理的目的,就在于保證記憶的喪失不是全部喪失,而遺留下來的東西將使我們在需要的時候得以把一件件事情重新構思起來。高明的理論不僅是現在用以理解現象的工具,而且也是明天用以回憶那個現象的工具。由此可見,數學思想方法作為數學學科的一般原理,在數學學習中是至關重要的。對于中學生來說,“不管他們將來從事什么業務工作,唯有深深地銘刻于頭腦中的數學的精神、數學的思維方法、研究方法,能隨時隨地發生作用,使他們受益終生。
3.學習基本原理有利于“原理和態度的遷移”
布魯納認為,“遷移應該是教育過程的核心——用基本的和一般的觀念來不斷擴大和加深知識。”曹才翰教授也認為,“如果學生認知結構中具有較高抽象、概括水平的觀念,對于新學習是有利的”。美國心理學家賈德通過實驗證明,“學習遷移的發生應有一個先決條件,就是學生需先掌握原理,形成類比,才能遷移到具體的類似學習中。”因此,那些概括的、鞏固的和清晰的知識能實現遷移。學生學習數學思想方法有利于實現學習遷移,從而可以較快地提高數學能力。
4.結構和原理的學習,能夠縮短初高級知識之間的間隙
一般地講,初等數學與高等數學的界限還是比較清楚的,特別是中學數學的許多具體內容在高等數學中不再出現了,有些術語如方程、函數等在高等數學中要賦予它們以新的涵義。在高等數學中幾乎全部保留下來的只有中學數學思想和方法以及與其關系密切的內容,如集合、對應等。因此,數學思想方法是聯結中學數學與高等數學的一條紅線。
二、中學數學教學內容的層次性
中學數學教學內容從總體上可以分為兩個層次:一類是表層知識,一類是深層知識。表層知識包括概念、性質、法則、公式、公理、定理等數學基本知識和基本技能,深層知識主要指數學思想和數學方法。
表層知識是深層知識的基礎,是教學大綱中明確規定的、教材中明確給出的、具有較強操作性的知識。學生只有通過對教材的學習,在掌握和理解了一定的表層知識后,才能進一步的學習和領悟相關的深層知識。
深層知識蘊含于表層知識之中,是數學的精髓,它支撐和統帥著表層知識。教師必須在講授表層知識的過程中不斷地滲透相關的深層知識,讓學生在掌握表層知識的同時,領悟到深層知識,才能使學生的表層知識達到一個質的飛躍,從而使數學教學超脫題海之苦,更富有朝氣和創造性。
那種只重視講授表層知識,而不注重滲透數學思想方法的教學,是不完備的教學,它不利于學生對所學知識的真正理解和掌握,使學生的知識水平永遠停留在一個初級階段,難以提高;反之,如果單純強調數學思想和方法,而忽略表層知識的教學,就會使教學流于形式,成為無源之水,無本之木,學生也難以領略到深層知識的真諦。因此,數學思想方法的教學應與整個表層知識的講授融為一體,使學生逐步掌握有關的深層知識,提高數學能力,形成良好的數學素質。
三、中學數學中的主要數學思想方法
數學思想是分析、處理和解決數學問題的根本想法,是對數學規律的理性認識。由于受中學生認知能力和教學內容的限制,數學教學過程中只能將部分重要的數學思想落實,而對有些數學思想不宜要求過高。
第二,有利于記憶。布魯納認為,“除非把一件件事情放進構造得好的模型里面,否則很快就會忘記。”“學習基本原理的目的,就在于保證記憶的喪失不是全部喪失,而遺留下來的東西將使我們在需要的時候得以把一件件事情重新構思起來。高明的理論不僅是現在用以理解現象的工具,而且也是明天用以回憶那個現象的工具。”由此可見,數學思想、方法作為數學學科的“一般原理”,在數學學習中是至關重要的。無怪乎有人認為,對于中學生“不管他們將來從事什么業務工作,唯有深深地銘刻于頭腦中的數學的精神、數學的思維方法、研究方法,卻隨時隨地發生作用,使他們受益終生。”
第三,學習基本原理有利于“原理和態度的遷移”。布魯納認為,“這種類型的遷移應該是教育過程的核心――用基本的和一般的觀念來不斷擴大和加深知識。”曹才翰教授也認為,“如果學生認知結構中具有較高抽象、概括水平的觀念,對于新學習是有利的,”“只有概括的、鞏固的和清晰的知識才能實現遷移。”美國心理學家賈德通過實驗證明,“學習遷移的發生應有一個先決條件,就是學生需先掌握原理,形成類比,才能遷移到具體的類似學習中。”學生學習數學思想、方法有利于實現學習遷移,特別是原理和態度的遷移,從而可以較快地提高學習質量和數學能力。
第四,強調結構和原理的學習,“能夠縮挾高級‘知識和’初級‘知識之間的間隙。”一般地講,初等數學與高等數學的界限還是比較清楚的,特別是中學數學的許多具體內容在高等數學中不再出現了,有些術語如方程、函數等在高等數學中要賦予它們以新的涵義。而在高等數學中幾乎全部保留下來的只有中學數學思想和方法以及與其關系密切的內容,如集合、對應等。因此,數學思想、方法是聯結中學數學與高等數學的一條紅線。
1.中學數學教學內容的層次
中學數學教學內容從總體上可以分為兩個層次:一個稱為表層知識,另一個稱為深層知識。表層知識包括概念、性質、法則、公式、公理、定理等數學的基本知識和基本技能,深層知識主要指數學思想和數學方法。
表層知識是深層知識的基礎,是教學大綱中明確規定的,教材中明確給出的,以及具有較強操作性的知識。學生只有通過對教材的學習,在掌握和理解了一定的表層知識后,才能進一步的學習和領悟相關的深層知識。
深層知識蘊含于表層知識之中,是數學的精髓,它支撐和統帥著表層知識。教師必須在講授表層知識的過程中不斷地滲透相關的深層知識,讓學生在掌握表層知識的同時,領悟到深層知識,才能使學生的表層知識達到一個質的“飛躍”,從而使數學教學超脫“題海”之苦,使其更富有朝氣和創造性。
那種只重視講授表層知識,而不注重滲透數學思想、方法的教學,是不完備的教學,它不利于學生對所學知識的真正理解和掌握,使學生的知識水平永遠停留在一個初級階段,難以提高;反之,如果單純強調數學思想和方法,而忽略表層知識的教學,就會使教學流于形式,成為無源之水,無本之木,學生也難以領略到深層知識的真諦。因此,數學思想、方法的教學應與整個表層知識的講授融為一體,使學生逐步掌握有關的深層知識,提高數學能力,形成良好的數學素質。
2.中學數學中的主要數學思想和方法
數學思想是分析、處理和解決數學問題的根本想法,是對數學規律的理性認識。由于中學生認知能力和中學數學教學內容的限制,只能將部分重要的數學思想落實到數學教學過程中,而對有些數學思想不宜要求過高。我們認為,在中學數學中應予以重視的數學思想主要有三個:集合思想、化歸思想和對應思想。其理由是:(1)這三個思想幾乎包攝了全部中學數學內容;(2)符合中學生的思維能力及他們的實際生活經驗,易于被他們理解和掌握;(3)在中學數學教學中,運用這些思想分析、處理和解決數學問題的機會比較多;(4)掌握這些思想可以為進一步學習高等數學打下較好的基礎。
此外,符號化思想、公理化思想以及極限思想等在中學數學中也不同程度地有所體現,應依據具體情況在教學中予以滲透。
數學方法是分析、處理和解決數學問題的策略,這些策略與人們的數學知識,經驗以及數學思想掌握情況密切相關。從有利于中學數學教學出發,本著數量不宜過多原則,我們認為目前應予以重視的數學方法有:數學模型法、數形結合法、變換法、函數法和類分法等。一般講,中學數學中分析、處理和解決數學問題的活動是在數學思想指導下,運用數學方法,通過一系列數學技能操作來完成的。
3.數學思想方法的教學模式
中學數學教學內容從總體上可以分為兩個層次:一個稱為表層知識,另一個稱為深層知識。表層知識包括概念、性質、法則、公式、公理、定理等數學的基本知識和基本技能,深層知識主要指數學思想和數學方法。
表層知識是深層知識的基礎,是教學大綱中明確規定的,教材中明確給出的,以及具有較強操作性的知識。學生只有通過對教材的學習,在掌握和理解了一定的表層知識后,才能進一步的學習和領悟相關的深層知識。
深層知識蘊含于表層知識之中,是數學的精髓,它支撐和統帥著表層知識。教師必須在講授表層知識的過程中不斷地滲透相關的深層知識,讓學生在掌握表層知識的同時,領悟到深層知識,才能使學生的表層知識達到一個質的“飛躍”,從而使數學教學超脫“題海”之苦,使其更富有朝氣和創造性。
那種只重視講授表層知識,而不注重滲透數學思想、方法的教學,是不完備的教學,它不利于學生對所學知識的真正理解和掌握,使學生的知識水平永遠停留在一個初級階段,難以提高;反之,如果單純強調數學思想和方法,而忽略表層知識的教學,就會使教學流于形式,成為無源之水,無本之木,學生也難以領略到深層知識的真諦。因此,數學思想、方法的教學應與整個表層知識的講授融為一體,使學生逐步掌握有關的深層知識,提高數學能力,形成良好的數學素質。
2.中學數學中的主要數學思想和方法
數學思想是分析、處理和解決數學問題的根本想法,是對數學規律的理性認識。由于中學生認知能力和中學數學教學內容的限制,只能將部分重要的數學思想落實到數學教學過程中,而對有些數學思想不宜要求過高。我們認為,在中學數學中應予以重視的數學思想主要有三個:集合思想、化歸思想和對應思想。其理由是:(1)這三個思想幾乎包攝了全部中學數學內容;(2)符合中學生的思維能力及他們的實際生活經驗,易于被他們理解和掌握;(3)在中學數學教學中,運用這些思想分析、處理和解決數學問題的機會比較多;(4)掌握這些思想可以為進一步學習高等數學打下較好的基礎。
此外,符號化思想、公理化思想以及極限思想等在中學數學中也不同程度地有所體現,應依據具體情況在教學中予以滲透。
3.數學思想方法的教學模式
數學表層知識與深層知識具有相輔相成的關系,這就決定了他們在教學中的辯證統一性。基于上述認識,我們給出數學思想方法教學的一個教學模式:
操作――掌握――領悟
對此模式作如下說明:(1)數學思想、方法教學要求教師較好地掌握有關的深層知識,以保證在教學過程中有明確的教學目的;(2)“操作”是指表層知識教學,即基本知識與技能的教學。“操作”是數學思想、方法教學的基礎;(3)“掌握”是指在表層知識教學過程中,學生對表層知識的掌握。學生掌握了一定量的數學表層知識,是學生能夠接受相關深層知識的前提;(4)“領悟”是指在教師引導下,學生對掌握的有關表層知識的認識深化,即對蘊于其中的數學思想、方法有所悟,有所體會;(5)數學思想、方法教學是循環往復、螺旋上升的過程,往往是幾種數學思想、方法交織在一起,在教學過程中依據具體情況在一段時間內突出滲透與明確一種數學思想或方法,效果可能更好些。
一般講,中學數學中分析、處理和解決數學問題的活動是在數學思想指導下,運用數學方法,通過一系列數學技能操作來完成的。
第一,“懂得基本原理使得學科更容易理解”。心理學認為“由于認知結構中原有的有關觀念在包攝和概括水平上高于新學習的知識,因而新知識與舊知識所構成的這種類屬關系又可稱為下位關系,這種學習便稱為下位學習。”當學生掌握了一些數學思想、方法,再去學習相關的數學知識,就屬于下位學習了。下位學習所學知識“具有足夠的穩定性,有利于牢固地固定新學習的意義,”即使新知識能夠較順利地納入到學生已有的認知結構中去。學生學習了數學思想、方法就能夠更好地理解和掌握數學內容。
第一.“懂得基本原理使得學科更容易理解”.心理學認為“由于認知結構中原有的有關觀念在包攝和概括水平上高于新學習的知識,因而新知識與舊知識所構成的這種類屬關系又可稱為下位關系,這種學習便稱為下位學習.”當學生掌握了一些數學思想、方法,再去學習相關的數學知識,就屬于下位學習了.下位學習所學知識“具有足夠的穩定性,有利于牢固地固定新學習的意義,”即使新知識能夠較順利地納入到學生已有的認知結構中去.學生學習了數學思想、方法就能夠更好地理解和掌握數學內容.
第二.有利于記憶.除非把一件件事情放進構造得好的模型里面,否則很快就會忘記.學習基本原理的目的,就在于保證記憶的喪失不是全部喪失,而遺留下來的東西將使我們在需要的時候得以把一件件事情重新構思起來.高明的理論不僅是現在用以理解現象的工具,而且也是明天用以回憶那個現象的工具.
由此可見,數學思想、方法作為數學學科的“一般原理”,在數學學習中是至關重要的.無怪乎有人認為,對于中學生“不管他們將來從事什么業務工作,唯有深深地銘刻于頭腦中的數學的精神、數學的思維方法、研究方法,卻隨時隨地發生作用,使他們受益終生.”
第三.學習基本原理有利于“原理和態度的遷移”. 這種類型的遷移應該是教育過程的核心——用基本的和一般的觀念來不斷擴大和加深知識.曹才翰教授也認為,“如果學生認知結構中具有較高抽象、概括水平的觀念,對于新學習是有利的,”“只有概括的、鞏固的和清晰的知識才能實現遷移.”美國心理學家賈德通過實驗證明,“學習遷移的發生應有一個先決條件,就是學生需先掌握原理,形成類比,才能遷移到具體的類似學習中.”學生學習數學思想、方法有利于實現學習遷移,特別是原理和態度的遷移,從而可以較快地提高學習質量和數學能力.
第四.強調結構和原理的學習,“能夠縮短‘高級’知識和‘初級’知識之間的間隙.”一般地講,初等數學與高等數學的界限還是比較清楚的,特別是中學數學的許多具體內容在高等數學中不再出現了,有些術語如方程、函數等在高等數學中要賦予它們以新的涵義.而在高等數學中幾乎全部保留下來的只有中學數學思想和方法以及與其關系密切的內容,如集合、對應等.因此,數學思想、方法是聯結中學數學與高等數學的一條紅線.
2.中學數學教學內容的層次
中學數學教學內容從總體上可以分為兩個層次:一個稱為表層知識,另一個稱為深層知識.表層知識包括概念、性質、法則、公式、公理、定理等數學的基本知識和基本技能,深層知識主要指數學思想和數學方法.
表層知識是深層知識的基礎,是教學大綱中明確規定的,教材中明確給出的,以及具有較強操作性的知識.學生只有通過對教材的學習,在掌握和理解了一定的表層知識后,才能進一步的學習和領悟相關的深層知識.
深層知識蘊含于表層知識之中,是數學的精髓,它支撐和統帥著表層知識.教師必須在講授表層知識的過程中不斷地滲透相關的深層知識,讓學生在掌握表層知識的同時,領悟到深層知識,才能使學生的表層知識達到一個質的“飛躍”,從而使數學教學超脫“題海”之苦,使其更富有朝氣和創造性.
那種只重視講授表層知識,而不注重滲透數學思想、方法的教學,是不完備的教學,它不利于學生對所學知識的真正理解和掌握,使學生的知識水平永遠停留在一個初級階段,難以提高;反之,如果單純強調數學思想和方法,而忽略表層知識的教學,就會使教學流于形式,成為無源之水,無本之木,學生也難以領略到深層知識的真諦.因此,數學思想、方法的教學應與整個表層知識的講授融為一體,使學生逐步掌握有關的深層知識,提高數學能力,形成良好的數學素質.
3.中學數學中的主要數學思想和方法
數學思想是分析、處理和解決數學問題的根本想法,是對數學規律的理性認識.由于中學生認知能力和中學數學教學內容的限制,只能將部分重要的數學思想落實到數學教學過程中,而對有些數學思想不宜要求過高.我們認為,在中學數學中應予以重視的數學思想主要有三個:集合思想、化歸思想和對應思想.其理由是:
(1)這三個思想幾乎包攝了全部中學數學內容;
(2)符合中學生的思維能力及他們的實際生活經驗,易于被他們理解和掌握;
(3)在中學數學教學中,運用這些思想分析、處理和解決數學問題的機會比較多;
(4)掌握這些思想可以為進一步學習高等數學打下較好的基礎.
此外,符號化思想、公理化思想以及極限思想等在中學數學中也不同程度地有所體現,應依據具體情況在教學中予以滲透.
數學方法是分析、處理和解決數學問題的策略,這些策略與人們的數學知識,經驗以及數學思想掌握情況密切相關.從有利于中學數學教學出發,本著數量不宜過多原則,我們認為目前應予以重視的數學方法有:數學模型法、數形結合法、變換法、函數法和類分法等.一般講,中學數學中分析、處理和解決數學問題的活動是在數學思想指導下,運用數學方法,通過一系列數學技能操作來完成的.
4.數學思想方法的教學模式
數學表層知識與深層知識具有相輔相成的關系,這就決定了他們在教學中的辯證統一性.基于上述認識,我們給出數學思想方法教學的一個教學模式:
操作——掌握——領悟
對此模式作如下說明:
(1)數學思想、方法教學要求教師較好地掌握有關的深層知識,以保證在教學過程中有明確的教學目的;
(2)“操作”是指表層知識教學,即基本知識與技能的教學.“操作”是數學思想、方法教學的基礎;
第一.“懂得基本原理使得學科更容易理解”.心理學認為“由于認知結構中原有的有關觀念在包攝和概括水平上高于新學習的知識,因而新知識與舊知識所構成的這種類屬關系又可稱為下位關系,這種學習便稱為下位學習.”當學生掌握了一些數學思想、方法,再去學習相關的數學知識,就屬于下位學習了.下位學習所學知識“具有足夠的穩定性,有利于牢固地固定新學習的意義,”即使新知識能夠較順利地納入到學生已有的認知結構中去.學生學習了數學思想、方法就能夠更好地理解和掌握數學內容.
第二.有利于記憶.除非把一件件事情放進構造得好的模型里面,否則很快就會忘記.學習基本原理的目的,就在于保證記憶的喪失不是全部喪失,而遺留下來的東西將使我們在需要的時候得以把一件件事情重新構思起來.高明的理論不僅是現在用以理解現象的工具,而且也是明天用以回憶那個現象的工具.
由此可見,數學思想、方法作為數學學科的“一般原理”,在數學學習中是至關重要的.無怪乎有人認為,對于中學生“不管他們將來從事什么業務工作,唯有深深地銘刻于頭腦中的數學的精神、數學的思維方法、研究方法,卻隨時隨地發生作用,使他們受益終生.”
第三.學習基本原理有利于“原理和態度的遷移”. 這種類型的遷移應該是教育過程的核心——用基本的和一般的觀念來不斷擴大和加深知識.曹才翰教授也認為,“如果學生認知結構中具有較高抽象、概括水平的觀念,對于新學習是有利的,”“只有概括的、鞏固的和清晰的知識才能實現遷移.”美國心理學家賈德通過實驗證明,“學習遷移的發生應有一個先決條件,就是學生需先掌握原理,形成類比,才能遷移到具體的類似學習中.”學生學習數學思想、方法有利于實現學習遷移,特別是原理和態度的遷移,從而可以較快地提高學習質量和數學能力.
第四.強調結構和原理的學習,“能夠縮短‘高級’知識和‘初級’知識之間的間隙.”一般地講,初等數學與高等數學的界限還是比較清楚的,特別是中學數學的許多具體內容在高等數學中不再出現了,有些術語如方程、函數等在高等數學中要賦予它們以新的涵義.而在高等數學中幾乎全部保留下來的只有中學數學思想和方法以及與其關系密切的內容,如集合、對應等.因此,數學思想、方法是聯結中學數學與高等數學的一條紅線.
2.中學數學教學內容的層次
中學數學教學內容從總體上可以分為兩個層次:一個稱為表層知識,另一個稱為深層知識.表層知識包括概念、性質、法則、公式、公理、定理等數學的基本知識和基本技能,深層知識主要指數學思想和數學方法.
表層知識是深層知識的基礎,是教學大綱中明確規定的,教材中明確給出的,以及具有較強操作性的知識.學生只有通過對教材的學習,在掌握和理解了一定的表層知識后,才能進一步的學習和領悟相關的深層知識.
深層知識蘊含于表層知識之中,是數學的精髓,它支撐和統帥著表層知識.教師必須在講授表層知識的過程中不斷地滲透相關的深層知識,讓學生在掌握表層知識的同時,領悟到深層知識,才能使學生的表層知識達到一個質的“飛躍”,從而使數學教學超脫“題海”之苦,使其更富有朝氣和創造性.
那種只重視講授表層知識,而不注重滲透數學思想、方法的教學,是不完備的教學,它不利于學生對所學知識的真正理解和掌握,使學生的知識水平永遠停留在一個初級階段,難以提高;反之,如果單純強調數學思想和方法,而忽略表層知識的教學,就會使教學流于形式,成為無源之水,無本之木,學生也難以領略到深層知識的真諦.因此,數學思想、方法的教學應與整個表層知識的講授融為一體,使學生逐步掌握有關的深層知識,提高數學能力,形成良好的數學素質.
3.中學數學中的主要數學思想和方法
數學思想是分析、處理和解決數學問題的根本想法,是對數學規律的理性認識.由于中學生認知能力和中學數學教學內容的限制,只能將部分重要的數學思想落實到數學教學過程中,而對有些數學思想不宜要求過高.我們認為,在中學數學中應予以重視的數學思想主要有三個:集合思想、化歸思想和對應思想.其理由是:
(1)這三個思想幾乎包攝了全部中學數學內容;
(2)符合中學生的思維能力及他們的實際生活經驗,易于被他們理解和掌握;
(3)在中學數學教學中,運用這些思想分析、處理和解決數學問題的機會比較多;
(4)掌握這些思想可以為進一步學習高等數學打下較好的基礎.
此外,符號化思想、公理化思想以及極限思想等在中學數學中也不同程度地有所體現,應依據具體情況在教學中予以滲透.
數學方法是分析、處理和解決數學問題的策略,這些策略與人們的數學知識,經驗以及數學思想掌握情況密切相關.從有利于中學數學教學出發,本著數量不宜過多原則,我們認為目前應予以重視的數學方法有:數學模型法、數形結合法、變換法、函數法和類分法等.一般講,中學數學中分析、處理和解決數學問題的活動是在數學思想指導下,運用數學方法,通過一系列數學技能操作來完成的.
4.數學思想方法的教學模式
數學表層知識與深層知識具有相輔相成的關系,這就決定了他們在教學中的辯證統一性.基于上述認識,我們給出數學思想方法教學的一個教學模式:
操作——掌握——領悟
對此模式作如下說明:
(1)數學思想、方法教學要求教師較好地掌握有關的深層知識,以保證在教學過程中有明確的教學目的;
(2)“操作”是指表層知識教學,即基本知識與技能的教學.“操作”是數學思想、方法教學的基礎;
第一,“懂得基本原理使得學科更容易理解”。心理學認為“由于認知結構中原有的有關觀念在包攝和概括水平上高于新學習的知識,因而新知識與舊知識所構成的這種類屬關系又可稱為下位關系,這種學習便稱為下位學習。”當學生掌握了一些數學思想、方法,再去學習相關的數學知識,就屬于下位學習了。下位學習所學知識“具有足夠的穩定性,有利于牢固地固定新學習的意義,”即使新知識能夠較順利地納入到學生已有的認知結構中去。學生學習了數學思想、方法就能夠更好地理解和掌握數學內容。
第二,有利于記憶。布魯納認為,“除非把一件件事情放進構造得好的模型里面,否則很快就會忘記。”“學習基本原理的目的,就在于保證記憶的喪失不是全部喪失,而遺留下來的東西將使我們在需要的時候得以把一件件事情重新構思起來。高明的理論不僅是現在用以理解現象的工具,而且也是明天用以回憶那個現象的工具。”由此可見,數學思想、方法作為數學學科的“一般原理”,在數學學習中是至關重要的。無怪乎有人認為,對于中學生“不管他們將來從事什么業務工作,唯有深深地銘刻于頭腦中的數學的精神、數學的思維方法、研究方法,卻隨時隨地發生作用,使他們受益終生。”
第三,學習基本原理有利于“原理和態度的遷移”。布魯納認為,“這種類型的遷移應該是教育過程的核心――用基本的和一般的觀念來不斷擴大和加深知識。”曹才翰教授也認為,“如果學生認知結構中具有較高抽象、概括水平的觀念,對于新學習是有利的,”“只有概括的、鞏固的和清晰的知識才能實現遷移。”美國心理學家賈德通過實驗證明,“學習遷移的發生應有一個先決條件,就是學生需先掌握原理,形成類比,才能遷移到具體的類似學習中。”學生學習數學思想、方法有利于實現學習遷移,特別是原理和態度的遷移,從而可以較快地提高學習質量和數學能力。
第四,強調結構和原理的學習,“能夠縮挾高級‘知識和’初級‘知識之間的間隙。”一般地講,初等數學與高等數學的界限還是比較清楚的,特別是中學數學的許多具體內容在高等數學中不再出現了,有些術語如方程、函數等在高等數學中要賦予它們以新的涵義。而在高等數學中幾乎全部保留下來的只有中學數學思想和方法以及與其關系密切的內容,如集合、對應等。因此,數學思想、方法是聯結中學數學與高等數學的一條紅線。
1.中學數學教學內容的層次
中學數學教學內容從總體上可以分為兩個層次:一個稱為表層知識,另一個稱為深層知識。表層知識包括概念、性質、法則、公式、公理、定理等數學的基本知識和基本技能,深層知識主要指數學思想和數學方法。
表層知識是深層知識的基礎,是教學大綱中明確規定的,教材中明確給出的,以及具有較強操作性的知識。學生只有通過對教材的學習,在掌握和理解了一定的表層知識后,才能進一步的學習和領悟相關的深層知識。
深層知識蘊含于表層知識之中,是數學的精髓,它支撐和統帥著表層知識。教師必須在講授表層知識的過程中不斷地滲透相關的深層知識,讓學生在掌握表層知識的同時,領悟到深層知識,才能使學生的表層知識達到一個質的“飛躍”,從而使數學教學超脫“題海”之苦,使其更富有朝氣和創造性。
那種只重視講授表層知識,而不注重滲透數學思想、方法的教學,是不完備的教學,它不利于學生對所學知識的真正理解和掌握,使學生的知識水平永遠停留在一個初級階段,難以提高;反之,如果單純強調數學思想和方法,而忽略表層知識的教學,就會使教學流于形式,成為無源之水,無本之木,學生也難以領略到深層知識的真諦。因此,數學思想、方法的教學應與整個表層知識的講授融為一體,使學生逐步掌握有關的深層知識,提高數學能力,形成良好的數學素質。
2.中學數學中的主要數學思想和方法
數學思想是分析、處理和解決數學問題的根本想法,是對數學規律的理性認識。由于中學生認知能力和中學數學教學內容的限制,只能將部分重要的數學思想落實到數學教學過程中,而對有些數學思想不宜要求過高。我們認為,在中學數學中應予以重視的數學思想主要有三個:集合思想、化歸思想和對應思想。其理由是:(1)這三個思想幾乎包攝了全部中學數學內容;(2)符合中學生的思維能力及他們的實際生活經驗,易于被他們理解和掌握;(3)在中學數學教學中,運用這些思想分析、處理和解決數學問題的機會比較多;(4)掌握這些思想可以為進一步學習高等數學打下較好的基礎。
此外,符號化思想、公理化思想以及極限思想等在中學數學中也不同程度地有所體現,應依據具體情況在教學中予以滲透。
3.數學思想方法的教學模式
中圖分類號:G632 文獻標識碼:A 文章編號:1002-7661(2012)05-129-01
一、數學思想方法教學的心理學意義
美國心理學家布魯納認為,“不論我們選教什么學科,務必使學生理解該學科的基本結構。”所謂基本結構就是指“基本的、統一的觀點,或者是一般的、基本的原理。”“學習結構就是學習事物是怎樣相互關聯的。”數學思想與方法為數學學科的一般原理的重要組成部分。下面從布魯納的基本結構學說中來看數學思想、方法教學所具有的重要意義。
1、“懂得基本原理使得學科更容易理解”。心理學認為“由于認知結構中原有的有關觀念在包攝和概括水平上高于新學習的知識,因而新知識與舊知識所構成的這種類屬關系又可稱為下位關系,這種學習便稱為下位學習。”當學生掌握了一些數學思想、方法,再去學習相關的數學知識,就屬于下位學習了。下位學習所學知識“具有足夠的穩定性,有利于牢固地固定新學習的意義,”即使新知識能夠較順利地納入到學生已有的認知結構中去。學生學習了數學思想、方法就能夠更好地理解和掌握數學內容。
2、有利于記憶。布魯納認為,“除非把一件件事情放進構造得好的模型里面,否則很快就會忘記。”“學習基本原理的目的,就在于保證記憶的喪失不是全部喪失,而遺留下來的東西將使我們在需要的時候得以把一件件事情重新構思起來。高明的理論不僅是現在用以理解現象的工具,而且也是明天用以回憶那個現象的工具。”由此可見,數學思想、方法作為數學學科的“一般原理”,在數學學習中是至關重要的。無怪乎有人認為,對于中學生“不管他們將來從事什么業務工作,唯有深深地銘刻于頭腦中的數學的精神、數學的思維方法、研究方法,卻隨時隨地發生作用,使他們受益終生。”
3、學習基本原理有利于“原理和態度的遷移”。布魯納認為,“這種類型的遷移應該是教育過程的核心——用基本的和一般的觀念來不斷擴大和加深知識。”曹才翰教授也認為,“如果學生認知結構中具有較高抽象、概括水平的觀念,對于新學習是有利的,”“只有概括的、鞏固的和清晰的知識才能實現遷移。”
二、中學數學教學內容的層次
中學數學教學內容從總體上可以分為兩個層次:一個稱為表層知識,另一個稱為深層知識。表層知識包括概念、性質、法則、公式、公理、定理等數學的基本知識和基本技能,深層知識主要指數學思想和數學方法。
表層知識是深層知識的基礎,是教學大綱中明確規定的,教材中明確給出的,以及具有較強操作性的知識。學生只有通過對教材的學習,在掌握和理解了一定的表層知識后,才能進一步的學習和領悟相關的深層知識。
深層知識蘊含于表層知識之中,是數學的精髓,它支撐和統帥著表層知識。教師必須在講授表層知識的過程中不斷地滲透相關的深層知識,讓學生在掌握表層知識的同時,領悟到深層知識,才能使學生的表層知識達到一個質的“飛躍”,從而使數學教學超脫“題海”之苦,使其更富有朝氣和創造性。
三、中學數學中的主要數學思想和方法
數學思想是分析、處理和解決數學問題的根本想法,是對數學規律的理性認識。由于中學生認知能力和中學數學教學內容的限制,只能將部分重要的數學思想落實到數學教學過程中,而對有些數學思想不宜要求過高。我們認為,在中學數學中應予以重視的數學思想主要有三個:集合思想、化歸思想和對應思想。其理由是:(1)這三個思想幾乎包攝了全部中學數學內容;(2)符合中學生的思維能力及他們的實際生活經驗,易于被他們理解和掌握;(3)在中學數學教學中,運用這些思想分析、處理和解決數學問題的機會比較多;(4)掌握這些思想可以為進一步學習高等數學打下較好的基礎。
數學方法是分析、處理和解決數學問題的策略,這些策略與人們的數學知識,經驗以及數學思想掌握情況密切相關。從有利于中學數學教學出發,本著數量不宜過多原則,我們認為目前應予以重視的數學方法有:數學模型法、數形結合法、變換法、函數法和類分法等。一般講,中學數學中分析、處理和解決數學問題的活動是在數學思想指導下,運用數學方法,通過一系列數學技能操作來完成的。
四、數學思想方法的教學模式
心理學認為“由于認知結構中原有的有關觀念在包攝和概括水平上高于新學習的知識,因而新知識與舊知識所構成的這種類屬關系又可稱為下位關系,這種學習便稱為下位學習。”當學生掌握了一些數學思想、方法,再去學習相關的數學知識,就屬于下位學習了。下位學習所學知識“具有足夠的穩定性,有利于牢固地固定新學習的意義”,即使新知識能夠較順利地納入到學生已有的認知結構中去。學生學習了數學思想、方法就能夠更好地理解和掌握數學內容。
第二,有利于記憶。
布魯納認為“除非把一件件事情放進構造得好的模型里面,否則很快就會忘記。”“學習基本原理的目的,就在于保證記憶的喪失不是全部喪失,而遺留下來的東西將使我們在需要的時候得以把一件件事情重新構思起來。高明的理論不僅是現在用以理解現象的工具,而且也是明天用以回憶那個現象的工具。”由此可見,數學思想、方法作為數學學科的“一般原理”,在數學學習中是至關重要的。無怪乎有人認為,對于中學生“不管他們將來從事什么業務工作,唯有深深地銘刻于頭腦中的數學的精神、數學的思維方法、研究方法,卻隨時隨地發生作用,使他們受益終生”。
第三,學習基本原理有利于原理和態度的遷移
布魯納認為,“這種類型的遷移應該是教育過程的核心――用基本的和一般的觀念來不斷擴大和加深知識。”曹才翰教授也認為,“如果學生認知結構中具有較高抽象、概括水平的觀念,對于新學習是有利的,”“只有概括的、鞏固的和清晰的知識才能實現遷移”。美國心理學家賈德通過實驗證明,“學習遷移的發生應有一個先決條件,就是學生需先掌握原理,形成類比,才能遷移到具體的類似學習中”。學生學習數學思想、方法有利于實現學習遷移,特別是原理和態度的遷移,從而可以較快地提高學習質量和數學能力。
第四,強調結構和原理的學習,能夠縮小高級知識和初級知識之間的間隙
一般地講,初等數學與高等數學的界限還是比較清楚的,特別是中學數學的許多具體內容在高等數學中不再出現了,有些術語如方程、函數等在高等數學中要賦予它們以新的涵義。而在高等數學中幾乎全部保留下來的只有中學數學思想和方法以及與其關系密切的內容,如集合、對應等。因此,數學思想、方法是聯結中學數學與高等數學的一條紅線。
二、右勾拳――中學數學教學中的內容層次
第一,表層知識
表層知識是深層知識的基礎,是教學大綱中明確規定的,教材中明確給出的,以及具有較強操作性的知識。學生只有通過對教材的學習,在掌握和理解了一定的表層知識后,才能進一步的學習和領悟相關的深層知識。
第二,深層知識
含于表層知識之中,是數學的精髓,它支撐和統帥著表層知識。教師必須在講授表層知識的過程中不斷地滲透相關的深層知識,讓學生在掌握表層知識的同時,領悟到深層知識,才能使學生的表層知識達到一個質的“飛躍”,從而使數學教學超脫“題海”之苦,使其更富有朝氣和創造性。
那種只重視講授表層知識,而不注重滲透數學思想、方法的教學,是不完備的教學,它不利于學生對所學知識的真正理解和掌握,使學生的知識水平永遠停留在一個初級階段,難以提高;反之,如果單純強調數學思想和方法,而忽略表層知識的教學,就會使教學流于形式,成為無源之水,無本之木,學生也難以領略到深層知識的真諦。因此,數學思想、方法的教學應與整個表層知識的講授融為一體,使學生逐步掌握有關的深層知識,提高數學能力,形成良好的數學素質。
三、直拳――中學數學教學的思想和方法
第一,教學思想
數學思想是分析、處理和解決數學問題的根本想法,我認為,在中學數學中應予以重視的數學思想主要有三個:集合思想、化歸思想和對應思想。其理由是:1.這三個思想幾乎包攝了全部中學數學內容;2.符合中學生的思維能力及他們的實際生活經驗,易于被他們理解和掌握;3.在中學數學教學中,運用這些思想分析、處理和解決數學問題的機會比較多;4.掌握這些思想可以為進一步學習高等數學打下較好的基礎。
此外,符號化思想、公理化思想以及極限思想等在中學數學中也不同程度地有所體現,應依據具體情況在教學中予以滲透。
第二,教學方法
數學方法是分析、處理和解決數學問題的策略,這些策略與人們的數學知識、經驗以及數學思想掌握情況密切相關。從有利于中學數學教學出發,本著數量不宜過多原則,我們認為目前應予以重視的數學方法有:數學模型法、數形結合法、變換法、函數法和類分法等。一般講,中學數學中分析、處理和解決數學問題的活動是在數學思想指導下,運用數學方法,通過一系列數學技能操作來完成的。
四、擺拳――中學數學的教學模式
模式:操作―掌握―領悟
1.數學思想、方法教學要求教師較好地掌握有關的深層知識,以保證在教學過程中有明確的教學目的;
2.“操作”是指表層知識教學,即基本知識與技能的教學。“操作”是數學思想、方法教學的基礎;
在數學教學過程中,能否合理地運用數學思想方法,有時往往是引發學生學習積極性的關鍵。要合理利用數學思想方法教學,就必須對其有比較全面的認識。下面我就自身的幾點體會淺談一下:
一、數學思想方法教學的心理學意義
美國心理學家布魯納認為:“不論我們選教什么學科,務必使學生理解該學科的基本結構。”所謂基本結構就是指“基本的、統一的觀點,或者是一般的、基本的原理”,“學習結構就是學習事物是怎樣相互關聯的”。數學思想與方法為數學學科的一般原理的重要組成部分,下面從布魯納的基本結構學說中來看數學思想、方法教學所具有的重要意義:
1.“懂得基本原理使得學科更容易理解”。心理學認為:“由于認知結構中原有的有關觀念在包攝和概括水平上高于新學習的知識,因而新知識與舊知識所構成的這種類屬關系又可稱為下位關系,這種學習便稱為下位學習。”當學生掌握了一些數學思想、方法,再去學習相關的數學知識,就屬于下位學習了。下位學習所學知識“具有足夠的穩定性,有利于牢固地固定新學習的意義”,即使新知識能夠較順利地納入到學生已有的認知結構中去。學生學習了數學思想、方法就能夠更好地理解和掌握數學內容。
2.有利于記憶。布魯納認為:“除非把一件件事情放進構造好的模型里面,否則很快就會忘記。”“學習基本原理的目的,就在于保證記憶的喪失不是全部喪失,而遺留下來的東西將使我們在需要的時候得以把一件件事情重新構思起來。高明的理論不僅是現在用以理解現象的工具,而且也是明天用以回憶那個現象的工具。”由此可見,數學思想、方法作為數學學科的“一般原理”,在數學學習中是至關重要的。無怪乎有人認為,對于中學生,“不管他們將來從事什么業務工作,唯有深深地銘刻于頭腦中的數學的精神、數學的思維方法、研究方法,卻隨時隨地發生作用,使他們受益終生”。
3.學習基本原理有利于“原理和態度的遷移”。布魯納認為:“這種類型的遷移應該是教育過程的核心――用基本的和一般的觀念來不斷擴大和加深知識。”曹才翰教授也認為:“如果學生認知結構中具有較高抽象、概括水平的觀念,對于新學習是有利的。”“只有概括的、鞏固的和清晰的知識才能實現遷移。”美國心理學家賈德通過實驗證明:“學習遷移的發生應有一個先決條件,就是學生需先掌握原理,形成類比,才能遷移到具體的類似學習中。”學生學習數學思想、方法有利于實現學習遷移,特別是原理和態度的遷移,從而可以較快地提高學習質量和數學能力。
4.強調結構和原理的學習,“能夠縮挾‘高級’知識和‘初級’知識之間的間隙”。一般地講,初等數學與高等數學的界限還是比較清楚的,特別是中學數學的許多具體內容在高等數學中不再出現了,有些術語如方程、函數等在高等數學中要賦予它們以新的涵義。而在高等數學中幾乎全部保留下來的只有中學數學思想和方法以及與其關系密切的內容,如集合、對應等。因此,數學思想、方法是聯結中學數學與高等數學的一條紅線。
二、中學數學中主要的數學思想和方法
數學思想是分析、處理和解決數學問題的根本想法,是對數學規律的理性認識。由于中學生認知能力和中學數學教學內容的限制,只能將部分重要的數學思想落實到數學教學過程中,而對有些數學思想不宜要求過高。我們認為,在中學數學中應予以重視的數學思想主要有三個:集合思想、化歸思想和對應思想。此外,符號化思想、公理化思想以及極限思想等在中學數學中也不同程度地有所體現,應依據具體情況在教學中予以滲透。
數學方法是分析、處理和解決數學問題的策略,這些策略與人們的數學知識、經驗以及數學思想掌握情況密切相關。從有利于中學數學教學出發,本著數量不宜過多原則,我們認為目前應予以重視的數學方法有數學模型法、數形結合法、變換法、函數法和類分法等。
三、數學思想方法的教學模式
數學表層知識與深層知識具有相輔相成的關系,這就決定了它們在教學中的辯證統一性。基于上述認識,我們給出了數學思想方法教學的一個教學模式:操作――掌握――領悟。
對此模式作如下說明:
1.數學思想、方法教學要求教師較好地掌握有關的深層知識,以保證在教學過程中有明確的教學目的。
2.“操作”是指表層知識教學,即基本知識與技能的教學。“操作”是數學思想、方法教學的基礎。
一、數學思想方法教學的心理學意義
美國心理學家布魯納認為,“不論我們選教什么學科,務必使學生理解該學科的基本結構.”所謂基本結構就是指“基本的、統一的觀點,或者是一般的、基本的原理.”“學習結構就是學習事物是怎樣相互關聯的.”數學思想與方法為數學學科的一般原理的重要組成部分.下面從布魯納的基本結構學說中來看數學思想、方法教學所具有的重要意義.
第一,“懂得基本原理使得學科更容易理解”.心理學認為“由于認知結構中原有的有關觀念在包攝和概括水平上高于新學習的知識,因而新知識與舊知識所構成的這種類屬關系又可稱為下位關系,這種學習便稱為下位學習.”當學生掌握了一些數學思想、方法,再去學習相關的數學知識,就屬于下位學習了.下位學習所學知識“具有足夠的穩定性,有利于牢固地固定新學習的意義,”即使新知識能夠較順利地納入到學生已有的認知結構中去.學生學習了數學思想、方法就能夠更好地理解和掌握數學內容.
第二,有利于記憶.布魯納認為,“除非把一件件事情放進構造得好的模型里面,否則很快就會忘記.”“學習基本原理的目的,就在于保證記憶的喪失不是全部喪失,而遺留下來的東西將使我們在需要的時候得以把一件件事情重新構思起來.高明的理論不僅是現在用以理解現象的工具,而且也是明天用以回憶那個現象的工具.”由此可見,數學思想、方法作為數學學科的“一般原理”,在數學學習中是至關重要的.無怪乎有人認為,對于中學生“不管他們將來從事什么業務工作,唯有深深地銘刻于頭腦中的數學的精神、數學的思維方法、研究方法,卻隨時隨地發生作用,使他們受益終生.”
第三,學習基本原理有利于“原理和態度的遷移”.布魯納認為,“這種類型的遷移應該是教育過程的核心――用基本的和一般的觀念來不斷擴大和加深知識.”曹才翰教授也認為,“如果學生認知結構中具有較高抽象、概括水平的觀念,對于新學習是有利的,”“只有概括的、鞏固的和清晰的知識才能實現遷移.”美國心理學家賈德通過實驗證明,“學習遷移的發生應有一個先決條件,就是學生需先掌握原理,形成類比,才能遷移到具體的類似學習中.”學生學習數學思想、方法有利于實現學習遷移,特別是原理和態度的遷移,從而可以較快地提高學習質量和數學能力.
第四,強調結構和原理的學習,“能夠縮挾高級’知識和‘初級’知識之間的間隙.”一般地講,初等數學與高等數學的界限還是比較清楚的,特別是中學數學的許多具體內容在高等數學中不再出現了,有些術語如方程、函數等在高等數學中要賦予它們以新的涵義.而在高等數學中幾乎全部保留下來的只有中學數學思想和方法以及與其關系密切的內容,如集合、對應等.因此,數學思想、方法是聯結中學數學與高等數學的一條紅線.
二、中學數學教學內容的層次
中學數學教學內容從總體上可以分為兩個層次:一個稱為表層知識,另一個稱為深層知識.表層知識包括概念、性質、法則、公式、公理、定理等數學的基本知識和基本技能,深層知識主要指數學思想和數學方法.
表層知識是深層知識的基礎,是教學大綱中明確規定的,教材中明確給出的,以及具有較強操作性的知識.學生只有通過對教材的學習,在掌握和理解了一定的表層知識后,才能進一步的學習和領悟相關的深層知識.
深層知識蘊含于表層知識之中,是數學的精髓,它支撐和統帥著表層知識.教師必須在講授表層知識的過程中不斷地滲透相關的深層知識,讓學生在掌握表層知識的同時,領悟到深層知識,才能使學生的表層知識達到一個質的“飛躍”,從而使數學教學超脫“題海”之苦,使其更富有朝氣和創造性.那種只重視講授表層知識,而不注重滲透數學思想、方法的教學,是不完備的教學,它不利于學生對所學知識的真正理解和掌握,使學生的知識水平永遠停留在一個初級階段,難以提高;反之,如果單純強調數學思想和方法,而忽略表層知識的教學,就會使教學流于形式,成為無源之水,無本之木,學生也難以領略到深層知識的真諦.因此,數學思想、方法的教學應與整個表層知識的講授融為一體,使學生逐步掌握有關的深層知識,提高數學能力,形成良好的數學素質.
三、中學數學中的主要數學思想和方法
數學思想是分析、處理和解決數學問題的根本想法,是對數學規律的理性認識.由于中學生認知能力和中學數學教學內容的限制,只能將部分重要的數學思想落實到數學教學過程中,而對有些數學思想不宜要求過高.我們認為,在中學數學中應予以重視的數學思想主要有三個:集合思想、化歸思想和對應思想.其理由是:(1)這三個思想幾乎包攝了全部中學數學內容;(2)符合中學生的思維能力及他們的實際生活經驗,易于被他們理解和掌握;(3)在中學數學教學中,運用這些思想分析、處理和解決數學問題的機會比較多;(4)掌握這些思想可以為進一步學習高等數學打下較好的基礎.
此外,符號化思想、公理化思想以及極限思想等在中學數學中也不同程度地有所體現,應依據具體情況在教學中予以滲透.
數學方法是分析、處理和解決數學問題的策略,這些策略與人們的數學知識,經驗以及數學思想掌握情況密切相關.從有利于中學數學教學出發,本著數量不宜過多原則,我們認為目前應予以重視的數學方法有:數學模型法、數形結合法、變換法、函數法和類分法等.一般講,中學數學中分析、處理和解決數學問題的活動是在數學思想指導下,運用數學方法,通過一系列數學技能操作來完成的.
一、數學思想方法教學的心理學意義
美國心理學家布魯納曾說過:“不論我們選教什么課程,都務必讓學生理解所學課程的基本組成結構。”所謂的組成基本結構就是指“統一的、基本的觀點,或者說是一般的、基本的原理。”“學習結構模式就是指所學習的事物是怎樣相互關聯起來的。”數學學科的重要組成部分是指數學的思想方法。本文從布魯納的基本結構學說中來看方法教學、數學思想所具有的重要意義。
1、懂得數學的基本原理使得學科更容易被理解。在心理學上講到“在認知結構中原來所擁有的有關觀點在概括和包攝基礎上高于從新學習的知識,然而從新所學的新的知識和以前所學的舊的知識所構成的一種類屬關系可以被稱為下位關系,像這種學習模式稱被我們稱為下位學習。”當學生通過平時的學習,在學習中掌握了一些基本的數學思想方法,然后去學習與此相關的數學知識,這就是下位學習。通過下位學習得到的知識“這種方法有足夠的穩定性,有利于牢固地固定新學習的意義,”即使新學到的知識能夠非常順利地納入到學生已擁有的認知結構當中去。學生學習了數學思想方法就能夠更好的理解和掌握數學內容。
2、有利于記憶。布魯納曾說過:“除非你把每一件事情都放進構造好的模型里面,不然很快你就會忘記。”“學習數學思想的基本原理就是保證你記憶的流失不是全部流失,然而遺留的事物將會使我們在有所需要的時候把那些事情重新聯系起來。我們知道相對高明的理論不僅是現在用來理解一些基本現象的有效工具,而且它也是在將來用來回憶那個現象的有效工具。”從中我們可以預見,數學的思想方法將會作為數學科目的“一般原理”,在數學學習中是非常重要的。也有人認為,對于現在中學生來說,不管將來他們會從事何種工作,只有深深地銘記在頭腦中的思維方法、研究方法、數學的精神,卻在任何地方都能夠發生相應作用,這就讓他們受益匪淺。”
3、學習基本原理有利于原理和態度的遷移。布魯納認為,“像這種類型的遷移應該是教育過程的核心――用基本的和一般的觀念來不斷擴大和加深知識。”曹才翰教授也說過:“如果學生認知結構中具有較高概括水平、抽象的觀念,對于新學習是沒有弊端的,”“只有鞏固的、概括的和清晰的知識才能實現遷移。”美國心理學家賈德通過實驗證明,“學習遷移的發生必有一個前提條件,就是學生需先掌握一定的原理,形成類比方法,才能遷移到具體的類似學習中去。”學生學習數學思想方法有利于實現學習的遷移,特別是態度和原理的遷移,從而可以較快地提高學習質量和數學能力。
4、強調結構和原理的學習,能夠縮挾“高級”知識和“初級”知識之間的間隙。通常來講,高等數學與初等數學的界限還是比較清楚的,特別是中學數學的許多具體內容在高等數學中不再出現了,有些術語如函數、方程等在高等數學中要賦予它們以新的涵意。但是在高等數學中幾乎全部保留下來的只有中學時期的數學思想和方法以及與其關系密切的內容。如對應、集合等。因此,數學方法、思想是聯結中學數學與高等數學的一條紅線。
二、中學數學教學內容的層次
中學數學教學內容從總體上可以分為兩個層次:一個稱為深層知識,另一個稱為表層知識。表層知識包括概念、公式、法則、公理等數學的基本知識和基本技能,深層知識主要指數學方法和數學思想。
表層知識是深層知識的基礎,是教學大綱中明確規定的,是教材中明確給出的以及具有較強操作性的知識。學生只有通過對教材的學習,在理解和掌握了一定的表層知識后,才能進一步的領悟和學習相關的深層知識。
深層知識蘊含于表層知識之中,是數學知識的精髓,它統帥和支撐著表層知識。教師必須在講授表層知識的過程中不斷地滲透相關的深層知識,讓學生在掌握表層知識的同時,領悟到深層知識,才能使學生的表層知識的理解上達到一個質的“飛躍”,因而讓數學在教學上超脫所謂的“題海”之苦,使其更富有創造性和朝氣。
那種只看中講授表層知識,而不去注重數學思想、方法的教學,這種教學是不完整的,它本身對學生所學知識的真正掌握和理解是不利的,讓學生的知識水平一直停留在一個初級階段,學習知識難以提高;相反,如果單純強調數學思想和數學方法,而忽略了表層知識的教學,就會使得教學流于形式,成無本之木,也會成為無源之水,讓學生很難領會到深層次的知識真諦。因此,數學思想、方法的教學應與整個表層知識的講授融為一體,讓學生一步步的掌握相關的深層次的知識,提高學生的數學能力,同時也會形成良好的數學素質。
三、中學數學中的主要數學思想和方法
數學思想方法是處理、分析和解決一般數學問題的基本方法,對數學的認識上是非常理性的。由于受到一定的限制,如中學數學教學內容和中學生認知能力,只有將一部分重要的數學思想方法落實到教學過程中去,然而對有的數學思想不用過高的要求。我們一致認為,在中學課程教學中三個重要思想要重視,包括化歸思想、集合思想和對應思想這三個思想。理由是:(1)中學生容易掌握的是他們的思維能力和他們的實際生活經驗;(2)要想在以后的高等數學學習中打好基礎就一定要掌握這種思想;(3)這三種思想幾乎包含了全部中學數學所擁有的內容;(4)在初中數學教學課程中,運用這三個思想去處理、分析和解決數學問題的時候比較多;(5)出此之外,符號化思想、公理化思想以及極限思想等在中學數學教學過程中都有不同程度地體現,應該依據實際情況在數學教學課程中予以滲透。數學教學課程中所用到的方法有處理法、分析法和解決數學問題的策略等方法,這些策略和人們所擁有的數學知識、經驗以及數學思想的掌握情況都是密不可分的。
四、數學思想方法的教學策略
1、多次孕育,反復應用
學生對數學思想方法的學習要經過發展、領悟和感受三個重要階段,因此教師在教學過程中應該是多次孕育、應用發展、初步形成三個階段。
如分類討論思想在解決問題時一般步驟為:一是確立分類討論的對象:二是進行合理的分類討論;三是逐類逐級分類討論;四是綜合歸納結論。從整體上看,中學數學分代數、幾何兩大類,然后采用不同方法進行研究,就是分類思想的體現,在教學方法上看,比如對初一“有理數的加法”教學中,教師應該主動引導學生去觀察、去思考、去探究,將有理數的加法法則分為三類研究。
2、掌握時機,把握好度
中學數學的教科書承擔著向學生傳授一些基本數學思想的重要責任,但在一定的程度上要有送把握:在不同的階段課程中要用相應的方式講到恰當的程度,我們用“滲透”,“介紹”和“突出”來進行表述。
(1)“滲透”就是把一些非常抽象數學思想方法融進實在的、具體的數學知識中,讓學生對這些知識有一定初步的了解。例如集合思想:初中是用舉例子的方法來表示集合的:不等式的解集可以用數軸或者不等式來進行表示。在高中階段則是應用描述法、列舉法、文氏圖三者并舉。
(2)“介紹”就是把一些數學思想在適當的時候引進到數學知識中,讓學生對這些思想有一定的理解,這是理性認識的開始。