緒論:寫作既是個人情感的抒發,也是對學術真理的探索,歡迎閱讀由發表云整理的11篇機械傳動論文范文,希望它們能為您的寫作提供參考和啟發。
在煤礦產業中,傳動齒輪應用非常廣泛,是煤礦機械的一個重要組成部分,但是煤礦的運輸重量一般都很大,在施工過程中,很容易導致超重現象,長時間高強度的工作就會導致傳動齒輪出現問題,導致機器癱瘓,影響煤礦的施工作業,降低生產效率,甚至造成安全隱患。
1傳動齒輪的工作環境及工作特點
煤礦的生產作業一般都是在礦井中進行的,傳動齒輪的工作環境大多都是在地下進行生產作業,井下的環境比較復雜惡劣,所以傳動齒輪要適應井下復雜的結構情況,因此相對而言傳動結構也復雜一點。由于煤礦是重型產業,要求傳動齒輪具有比較高的承載能力和性能,礦井一般空間不是很大,所以傳動齒輪還要滿足體積小,抗沖擊能力強等特點,傳動要求高效率,盡量減少過程中能量的損失。
2傳動齒輪失效的表現形式
2.1傳動齒輪磨損失效
磨損的程度分為很多種,一般分為:正常的磨損、中度磨損、破壞性磨損、磨料性磨損以及腐蝕性磨損等。一般性的磨損不會對齒輪的傳動造成重大的影響,比如正常的磨損,這是齒輪傳動過程中必然存在的,在齒輪的使用壽命中,不會造成齒輪失效,這個磨損是經過時間慢慢磨損的,不影響齒輪的正常轉動;對于中度磨損,這個要比正常的磨損速度快一點,在齒輪傳動工作的過程中,可能會發出噪音,由于磨損的程度比較大,損失機械能,會降低齒輪工作的效率;破壞性磨損,這個磨損的程度就很大了,齒輪表面會形成嚴重的損傷,嚴重影響傳動齒輪工作的效率,破壞了齒輪的結構,大大縮短齒輪的使用壽命;磨料性磨損是指在齒輪中間進入了一些顆粒,增大了齒輪間的摩擦系數,摩擦力增大,加速了齒輪的磨損,可能會出現齒輪停止轉動的現象;腐蝕性磨損就是在齒輪轉動的過程中與周圍的化學物質發生的反應,發生了齒輪表面的腐蝕,嚴重影響齒輪的工作效率。
2.2傳動齒輪疲勞失效
在加工過程中,齒輪的表面肯定存在初始裂紋,加之傳動齒輪工作的過程中應力的反復作用下,造成材料的疲勞,當作用的應力超出了材料的疲勞極限時,裂紋就會延伸擴張,加速齒輪的損壞,出現齒輪失效。
2.3傳動齒輪膠合失效
齒輪的轉動需要油的幫助,在強重力作用下,齒輪間的油不能及時的補充,造成兩個齒輪接觸面的油膜擠破,兩個金屬齒輪直接接觸在一起,在高速運轉的情況下,溫度上升,可能造成齒輪的膠合,出現失效。
2.4傳動齒輪斷裂失效
齒輪的斷裂意味著徹底不能工作,斷裂分為疲勞斷裂,高負荷斷裂以及淬性斷裂等。疲勞斷裂就是齒輪在彎曲應力的反復作用下,出現裂痕,當應力超出了齒輪的疲勞極限時,裂痕繼續擴張,導致斷裂;高負荷斷裂是指在高強度的作業狀態下,負荷已經超出了齒輪的額定負荷導致的破壞性斷裂,或者由于腐蝕使得齒輪部分點出現點蝕,導致斷裂等;淬性斷裂是指傳動齒輪經過熱處理時產生了過大的內應力,產生裂紋,外界的壓應力與彎曲應力的作用下,產生疲勞,當超過它的疲勞極限時就會促使裂紋延伸,導致淬性斷裂,這種斷裂的特點就是初始斷裂的部位顏色會有點深,這是氧化的結果。
3傳動齒輪出現失效的具體原因
設計階段:由于齒輪工作環境的特殊性,決定了煤礦機械齒輪設計的特殊性,在設計階段,可能忽視了傳動齒輪在礦井工作的特殊性,按照傳統的設計來設計煤礦機械傳動齒輪,造成傳動齒輪不能滿足礦井下高強度,環境復雜的要求,達不到韌度、抗沖擊和耐疲勞的要求,這是導致傳動齒輪失效的自身原因之一。齒輪的制造加工階段:即使齒輪的設計沒有問題,若在制造加工方面不合格,齒輪一樣會失效,如果質量把控不嚴格,鍛造時化學成分超標或者化學成分有殘留,降低了齒輪的性能,不能滿足工作的需要。例如:在加工過程中C的含量超標,就會增加齒輪的脆性,容易發生斷裂,造成失效。齒輪的安裝使用階段:不正確的安裝方式同樣會導致傳動齒輪的失效,安裝的位置出現偏差,影響整個傳動齒輪的安全,同時,傳動齒輪的工作需要油的不斷補充,一旦缺少油就會增大摩擦力,降低齒輪工作的效率,增加磨損,導致傳動齒輪的失效。
4避免傳動齒輪失效的有效措施
根據上述傳動齒輪出現時效的形式和失效的原因,制定防止傳動齒輪失效的有效措施,避免失效問題的出現。
4.1齒輪設計階段控制
設計階段要充分的對煤礦齒輪的工作環境進行研究考察,只有充分了解齒輪的工作環境和工作性能的需要,才能對齒輪提出合理化的設計。根據煤礦齒輪工作的特殊性,優化齒輪的設計方案,滿足齒輪抗沖擊力、耐疲勞性以及承載力的要求,進行精確的計算,在符合國家標準的前提下,選擇適合煤礦特殊工作的材料,尤其是鋼材的選用尤為重要,這直接影響著齒輪的強度,最好經過研究確定選材,確定油等,以免后期工作出現漏洞。
4.2齒輪工藝制造階段控制
選材好工藝也好才能保證傳動齒輪的質量,要嚴格控制齒輪制造過程中的質量,改善制造工藝,提高工藝質量。傳動齒輪的表面不能過于光滑,研究表明,表面略微粗糙的齒輪要比表面光滑的齒輪使用壽命更長,這個粗糙度應該根據實驗來確定,合理的控制粗糙度,將齒輪的性能提升到最佳狀態。
4.3齒輪安裝階段控制
齒輪的安裝看起來很簡單,其實有比較高的要求,對于傳動齒輪的平衡度、垂直度都是有要求的,而且這個標準還很嚴格,稍微有一點偏差就會影響整體的性能,所以,在安裝階段應該有專業人士來進行指導,運用專業的工具輔助安裝,最大限度的減少齒輪間的摩擦,降低損耗,提高工作效率,延長使用壽命。
4.4齒輪使用及維護階段控制
在傳動齒輪的使用過程中,應盡量不要超過傳動齒輪的額定負荷量,油也要及時補充,保證傳動齒輪是在油的輔助下工作,此外,油不能摻入雜質,保持純凈,雜質進入齒輪間會增大摩擦系數,影響齒輪的正常工作。設備的使用過程中應該定期維護保養,并檢查傳動齒輪,及時發現問題并處理問題,對于可能發生的問題做到及早預防,防患于未然,防止出現傳動齒輪的失效問題。
5結束語
煤礦產業是我國比較重要的一部分,煤礦的產量決定于煤礦機械的工作效率,影響著經濟的發展,傳動齒輪在煤礦機械中發揮著重要的作用,保證傳動齒輪的正常工作是保證煤礦機械正常工作的重要前提,傳動齒輪失效是齒輪常見的問題,我們必須對其進行研究,找到避免失效的有效措施,每個階段嚴格把關,將失效概率降到最低,提高生產效率。
參考文獻
[1]張玉玉.分析煤礦機械傳動齒輪失效形式[J].黑龍江科技信息,2015,23:80.
[2]劉穎.煤礦機械傳動齒輪失效形式分析及改進措施[J].煤炭技術,2013,1:38-39.
關鍵詞: 齒輪減速器;機械傳動;降噪問題;措施
Key words: gear reducer;mechanical transmission;noise reduction;measure
中圖分類號:TH132.41 文獻標識碼:A 文章編號:1006-4311(2013)29-0058-02
0 引言
在工業機械設計中,齒輪傳動是齒輪減速器最主要的部分,也是系統功率傳遞的主要形式,因此齒輪作為機械傳動的主要角色,在整個機械系統中發揮著舉足輕重的作用,但是以往的對于齒輪傳動性能的評價只注重于傳動效率、平穩性、可靠性等方面,忽略了齒輪傳動噪音的問題。隨著人們對于機械設備性能品質要求的提高,對工作環境也有了很高的要求,從而使得減速器齒輪傳動噪音問題凸顯了出來,成為了機械傳動中急需解決的問題。
1 齒輪傳動中噪音產生機理
1.1 系統傳動誤差 在齒輪傳動中,一個整體機械系統其組成往往較為復雜,完整的齒輪箱作為復雜的傳動系統,在力的各種形式轉化過程中,會產生高達幾十種的固有頻率,因此振動形式各式各樣。在物理學中我們知道,聲音是由振動產生的,任何系統傳動都會產生振動。在系統傳動中,振動是由系統誤差引起的,系統誤差是導致振動的主要原因。
1.2 齒輪傳動誤差 齒輪傳動中噪音主要產生原因是漸開線誤差或者齒輪間相鄰齒距誤差而造成的。而齒輪傳動中振動幅度和振動頻率是齒輪噪音大小的主要衡量因素,在噪音研究中有著重要的意義。但是在實際研究中齒輪系統機械響應是非常復雜的,因此可以通過調整激勵來改變系統固有頻率。總而言之,齒輪傳動誤差是作用在齒輪和整個系統的擾動因素并使之產生響應,從而產生噪音通過空氣向外傳播。
2 齒輪減速器在機械傳動中噪音成因分析
2.1 參數因素 ①齒輪精度。齒輪精度是其設計和加工品質重要衡量標準,高精度的齒輪在機械傳動過程中平穩運轉,產生較少的噪音。但是在實際輪齒設計和加工中,出于經濟性原因,為了降低成本,設計者往往在滿足基本強度要求下最大限度選用低精度齒輪等級,因此忽略了精度等級,低精度成為齒輪產生噪聲與側隙的主要因素,造成噪音增大。②齒輪寬度。在齒輪傳動允許的設計范圍內,盡可能的增大從動齒輪齒寬,這樣可以增大接觸面積,不但能夠提高齒輪受載能力,還可以提高輪齒傳動的平穩性,減少振動,達到降噪聲目的。③齒距和壓力角。在適當的范圍內減小齒距能夠增加輪齒嚙合數量,增加輪齒重合度,從而降低嚙合齒輪撓度,提高傳動效率,減少噪音的產生。此外,較小的壓力角可以使得齒輪接觸角和橫向重合度都增大,使得傳動平穩,降低噪音、提高傳動精度。
2.2 精度因素 ①嚙合平穩性精度。齒輪的工作平穩性精度是指在齒輪傳動中對于齒輪瞬時速比的變化要求。在齒輪轉動一周時會多次出現的轉角誤差,在輪齒嚙合過程中瞬時傳動比的變化會使得齒輪產生多次撞擊形成振動,這樣使齒輪在傳動過程中產生噪音[1]。②齒輪接觸精度。齒輪接觸斑點大小是評價齒輪接觸精度好壞的主要指標,接觸斑點過小勢必會造成齒輪傳動噪聲增大。齒輪接觸精度低是由于齒向誤差影響了輪齒橫向接觸面積,而輪齒基節偏差和齒形誤差都會對輪齒橫向接觸面積產生影響。③齒輪運動精度。齒輪的運動精度主要表征了運動傳遞的準確性,即齒輪在嚙合一個周期后轉角誤差最大限值。齒輪齒圈徑向跳動在齒輪旋轉一周內的齒間累計誤差會產生低頻噪音,尤其當齒間累計誤差逐漸增大時,會在齒輪嚙合時造成沖擊,從而導致角速度的變化,使得噪音顯著增大。
2.3 裝配因素 ①齒輪軸向裝配間隙過小。如果齒輪在裝配前沒有將其毛刺及時清除,將會導致齒輪端面與前后端蓋之間的滑動接合面在嚙合過程中造成接合面的損壞,使得齒輪運動精度降低,產生噪音。②雜物影響。齒輪箱由于雜物進入,造成輪齒間磨損加劇,齒輪在轉動過程中平穩度降低,不但降低齒輪傳動效率,還會使得噪音增大。
3 齒輪減速器在機械傳動中的降噪措施
3.1 齒輪的參數合理優化 ①適當增大主動齒輪的螺旋角。因為當螺旋角增大時,齒輪重合度也會隨之加大,這樣會使得噪音大大降低。然后,當螺旋角過大時,會導致齒輪加工和安裝可操作性變差,對安裝精度要求很高,如果達不到精度,就會使實際的重合度變小,其降噪效果反而比螺旋角較小時要差,因此要選擇合適的螺旋角。②增加從動齒輪齒面寬。齒寬適當增加會使得輪齒嚙合度提高,從而使輪齒傳動平穩性增強。所以齒輪的齒寬越大其平穩性越好,降噪效果越好。③提高齒輪精度。齒輪精度的提高,將大大提高輪齒表面粗糙度,從而提高齒輪的運動精度,有效的降低噪音。
3.2 合理選擇齒面硬度、齒輪側隙 通過實驗可以得出結論:通常模數齒輪側隙小于0.04mm時,噪聲較低。所以在設計允許的范圍內適當減小齒輪側隙就可以降低噪音。此外,在相同材料和精度的情況下,軟齒面比硬齒面噪聲要小1.5-6dB,采用主動齒輪硬度比從動齒輪硬度高2-3HBC時取C,可有效降低噪聲。
3.3 對齒面進行特殊處理 在齒輪強度設計所允許的情況下,齒輪加工可以選用高阻尼鑄鐵或某些非金屬材料,也可以通過給齒面進行涂鍍非金屬材料來進行處理。因為選用具有良好塑性和韌性的材料可以減少齒輪嚙合沖力與節線撞擊,通過減少振動與撞擊的方法,就可以有效降噪。
3.4 改善齒輪條件 齒輪的要根據齒輪的圓周速度來選擇適當的方式與油,這樣就可以有效的降低噪音。因此根據減速器的不同以及工作條件的差異來選擇合適的方式與劑。此外,對于在高溫環境下工作的減速器,僅通過油池將達不到潤和要求,因此要結合循環油等方式進行。
3.5 合理設計減速箱箱體結構 在減速器齒輪箱箱體設計過程中,合理的箱體結構可以增加齒輪傳動箱的密封性,使其具有良好的降噪效果。因此齒輪設計時盡可能采用閉式結構,同時箱體結合處要安裝減振裝置,同時將減速器安裝在固定的座體或支撐上,采用這些方法都能夠有效降低噪聲。此外,在對減速器噪音要求較高的情況下,可以在箱體表面設置阻尼材料層,如泡沫塑料等來降低減速器噪音的產生。
4 結束語
本文通過研究齒輪傳動噪音產生機理,分析了減速器齒輪傳動過程中噪聲的產生原因,提出了相應的降噪方法。但是隨著人們生活水平的提高,對噪聲控制要求的不斷提升,對減速器降噪的研究需要進一步加深,以便找到更有效的減速器降噪方法。
參考文獻:
一、引言
近些年來,隨著社會經濟建設規模的不斷擴大,機械在社會生產領域的應用力度越來越大,以機械代替傳統的人工生產,在生產效率方面顯現較強優勢。機械系統有原動力系統、傳動系統和執行系統三大部分組成。各個部分在機械系統中發揮著不同的作用。機械的動力由動力系統提供;機械執行系統的結構比較復雜,并具有功能多樣性;傳動系統是聯系這兩個系統的橋梁。如果機械系統沒有傳動系統,那么機械系統也就無法運轉。所以,不管是在任何時期,不管是機械技術如何的發展,都離不開機械傳動系統。本文就機械傳動技術發展現狀進行了探討和分析,并對其未來的發展趨勢進行了展望,以期通過本論文的淺談,能夠給機械傳統技術研究者提供一定的參考。
二、機械傳動技術的雛形
早在我國春秋時代,先人們就已經開始研究機械。桔槔就是先人們充分利用缸蓋原理設計制造的簡單的機械,這是我國機械的雛形。該種機械可謂是我國機械的鼻祖,對未來我國機械技術的發展有著歷史性的影響。先人們所制造的桔槔采用的是缸蓋原理。缸蓋原理就涉及到傳動系統。與其說桔槔是機械技術的雛形,不如說是人類智慧的結晶。隨著歷史車輪的滾滾向前,我們的先人們又發明了指南車,該種車是利用齒輪傳動系統和離合裝置開控制和指示車的方向。不過對于指南車的具體敘述在現有歷史文獻資料上沒有詳盡的記載。但這也從某種意義上表明了該種車確實存在和使用過,是人類機械技術發展的重要標志。到了西漢,人類發明了齒輪,通過齒輪傳動完成某個簡單動作。放眼于國外,許多文獻資料上都能找到有關機械的記載。從羅馬國的谷物碾磨機到法國的谷物磨中率先采用了斜齒輪傳動,都見證了傳動技術的發展歷史。不過需要提出的是,該時期的齒輪的材質是石頭,耐久性不是很好。這和當時的社會生產力和科技水平有著必然的聯系。從上述我們可以得知不管是我國還是外國從古代就開始研究機械傳動技術。到了十四世紀,歐洲所發明的鐘表中使用了齒輪系統。基于時鐘對工藝要求比較嚴格,相應地對傳動齒輪的精密度要求也比較高,如果采用原始的石材作為齒輪制作原料。那么時鐘的準確性將很難得到保障。這個時期,歐洲人使用金屬作為齒輪的材質,極大地提高了時鐘走時的準確性。不過,我們需要注意的問題是,在第一次工業革命爆發之前,機械和齒輪只是一種概念,尤其是機械傳動技術并沒有進行深入發展。機械傳動技術真正意義的發展是在第一次工業革命爆發后;該時期世界上的一些國家都加大了對機械傳動技術的研究力度。蒸汽機是將蒸汽的能量轉換為機械功的往復式動力機械。蒸汽機的出現曾引起了18世紀的工業革命的全面爆發。第一臺蒸汽機器是一個名叫紐克曼的蘇格蘭鐵匠發明制造的,這在當時是最先進的蒸汽機了。直到20世紀初,它仍然是世界上最重要的原動機,后來才逐漸讓位于內燃機和汽輪機等。
三、現代機械傳動技術的發展現狀
隨著社會經濟的發展,機械傳動技術得到了廣闊的發展空間。十九世紀末,內燃機和電動機在社會領域中得以廣泛的應用,相應地對機械傳動技術提出了更高要求。到了二十世紀,隨著科學技術的發展,傳動技術更是取得了巨大進步,一些構造比較復雜的齒輪在這個時期已經出現,比如直齒輪、斜齒輪、錐齒輪及蝸桿傳動。這些齒輪在機械中的應用推動了工業的發展,使工業逐漸向機械化和精密化邁進。二十世紀五十年代,出現了齒輪幾何學,并逐漸發展成為一門獨立學科,該學科知識在高速重載汽輪發電機傳動系統中涉及的比較多。自進入二十一世紀,機械傳動技術已經相當成熟,齒輪作為傳動系統的重要載體,在社會多領域中都有涉足。比如齒輪在航空航天領域的應用。基于航天領域特殊性,相應地對傳動系統的要求也比較高,這就促使傳動系統的發展也被推向了新的高度。就我國機械傳動技術發展總體情況而言,同國外發達國家技術水平相比,還存在一定的差距,這是我國機械領域需要重點研究的技術課題。
四、機械傳動技術未來發展趨勢
隨著社會生產力的不斷提高,人們對機械傳動技術勢必會提出更高要求,以滿足社會生產需求。當今時代是信息爆炸時代,計算機技術、微電子技術、通信技術這些先進成熟技術在當今機械傳動系統中的融合力度越來越大。這也必將推進機械傳動技術向智能化、信息化方向發展。在這樣多種技術共存的年代,機械領域的科技人員應緊握時展脈搏,結合我國機械傳動技術發展現狀,積極探索機械傳動新技術,研究出高品質的機械傳動技術,逐漸縮短我國同世界發達國家機械傳動技術水平差距,促使我國同世界機械傳動技術水平接軌,成為技術強國,進而提升我國的國際地位。
1 概述
齒輪是機械傳動的一個關鍵部件。科技論文。受材質、加工精度、熱處理工藝、幾何精度、狀態及負荷、轉速、環境等諸多因素的影響,齒輪會發生各種各樣的損傷,如斷齒、點蝕剝落、膠合或磨損,造成齒輪失效,至使齒輪的壽命差別很大,長則十幾年,短則數十天。
在橡膠等行業常用的橡膠機械設備上,因受空間、重量等限制, 常采用制造簡單、更換方便的開式齒輪傳動。特別是開放式煉膠機的驅動齒輪由于負荷大, 受沖擊嚴重, 轉速低,不良, 而且工作環境惡劣,粉塵污染嚴重,齒面常發生劇烈磨損。其小齒輪長則使用十幾個月,短則使用5 個月,其齒厚磨損量就已達到報廢標準, 大齒輪壽命也只有2~3 年左右。頻繁更換齒輪,不僅耗費了大量的人力、物力、財力,同時也常因檢修而影響生產, 更重要的是因齒輪壽命不穩定,現場必須時時關注設備的安全運行問題,現場人員思想壓力較大。科技論文。
2原用齒輪的磨損失效分析
由于開放式煉膠機作業區的空氣中漂浮有大量粉塵, 這些微粒多為碳黑、鈣、硅等元素的化合物,其中有些顆粒硬度超過齒輪齒面硬度,當這些顆粒落到齒面上, 則被油脂粘附在上面不易滑落,隨著輪齒的相互嚙合, 受強大壓力作用, 較硬的粉塵顆粒被嵌入齒面;因為齒輪齒面間是滾滑混合運動,粉塵顆粒被擠搓前進,就會在齒面上劃出一條條鱗刺狀劃痕;繼續受壓應力作用, 一個個鱗刺疲勞脫落, 就形成磨損顆粒。科技論文。隨著磨粒越來越多, 齒面磨損會越來
越快,嚴重時會一層層剝下,或一條條撕脫。
3 開放式煉膠機驅動齒輪的修復方法
開放式煉膠機在橡膠混煉工藝中,因其負載高,操作環境差,因而造成驅動齒輪的主要失效形式是,齒輪齒面磨損。
以某廠煉膠車間XK560煉膠機為例,在大修理中出現以下情況,大小驅動齒輪磨損嚴重。實測數據為,小驅動齒輪齒根厚20mm,大驅動齒輪齒根厚28mm。
一、 修理方案的選擇:1 更換新的大小驅動齒輪。
2復焊法修復大小驅動齒輪。
3大小驅動齒輪換位修復法。
二、 方案的比較:如果磨損后的齒根強度足夠的話,第3種方案最為經濟可靠,而且修理工藝簡便易行。
三、 為防止磨損后的輪齒發生折斷,對輪齒的彎曲強度進行如下校核,為安全起見,假定全部載荷都作用在一個輪齒齒頂上,輪齒根部受到彎矩最大,輪齒相當于一個懸臂梁,磨損后的齒根處是危險斷面,其彎曲應力最大。在校對時應保證驅動齒輪σb不超過許用彎曲應力[σb]。
即
圖 1
式中K…載荷系數.取K=1.3
T1…小驅動齒輪傳動的扭矩. XK560開放式煉膠機 取8.562×106Nmm
αf…負荷線與O點速度方向之間的夾角.載荷作用角,取30°
Lf…危險截面與壓力Ft的距離. 取Lf=34mm (實側值)
b…齒輪工作寬度. 已知為270mm
d1…小驅動齒輪分度圓直徑. 已知為288mm
α…齒輪壓力角. 取α=20°
[σb]…許用彎曲應力. 查表計算得 152N/mm2
S1…磨損后的齒根危險截面寬度. Mm
計算結果
S1≥18.37mm
圖2圖 3
因為小驅動齒輪齒根厚實側值為20mm,大驅動齒輪齒根厚實側值28mm。
因此齒根危險截面實側值均大于S1值。所以在此齒輪反面修復法對的彎曲
強度來講是不存在問題的。但從結構方面來講,小驅動齒輪可不經任何直接
反面裝配。而大驅動齒輪的結構如圖2,由于其臺階的影響不能直接反面配.
于是提出將齒輪臺階切斷,將原大驅動齒輪結構分成2件,即圓套1齒輪將齒
輪2原斜鍵加工成與原斜度相反的鍵槽后反面裝配的方案如圖3.
這樣鍵的工作長度減少了,需對它進行強度校核,楔件聯接裝配后的受力情況,如圖4a所示,其主要失效形式是相互楔緊的工作面被壓擠,故應校核各工作面的抗擠壓強度.
當傳遞扭矩時(圖4b) 為了簡化把鍵和軸視為一體,并將下放分布在半圓柱面上徑向壓力集中力N代替,由于沿鍵的工作長度L及沿寬度b上的壓力分布情況均較以前發生了變化,壓力的合力N不再通過軸心.計算時假設沿鍵長均勻分布,沿鍵寬為三角形分布, 則整個工作面上壓力合力N的最大許用值為
N =bL[σb]P/2
X =b/6 Y =d/2
取鍵與輪轂及鍵與鍵與軸槽面的摩擦系數f,則可近似求得允許的傳遞扭矩為:
T=1/12bL(b﹢6fd)[σb]N㎜
修理后的楔鍵應滿足下列關系
T=1/12bL(b﹢6fd)[σb]≥T
式中 T--鍵傳遞的扭矩 Nmm
b--鍵寬. 已知b=70mm
L--鍵的工作長度 已知L=270mm
f--摩擦系數 0.15 (查表)
d--軸徑 已知d=300mm
[σb]-許用擠壓應力 90MPa
T1-工作扭矩 3.45×107 N㎜ (XK560開放式煉膠機計算值)
將以上數據代入(3)得
T=4.82×107N㎜ ≥ T1
即鍵的工作長度雖然減少,但強度足夠,證明該方案可行,根據以上計算結果,可采用換位修復法,此法維修工藝簡單,維修費用低,比更換一對驅動齒輪節約費用20000元.
圖 4a 圖 4b
4 結論
但需要說明的一點是,采用此法,由于齒厚未恢復到原齒厚,同時輪齒在一個方向上作用負荷后又反方向作用時,其彎曲疲勞壽命、疲勞極限都將減少.因此,在使用壽命上不能達到原設計要求,此外,對裝有反轉點動及反接制動裝置的開煉機,在反轉時有較大的沖擊,盡管如此,筆者認為,這種修復齒輪的實際生產中是確實可行的,特別對大驅動齒輪的修復效益是顯著的.此法在該廠開煉機的大修中已多次使用過,如果能在齒厚磨損剛超過1/5齒厚時進行反面修復,效果更好,此法也同樣適用于速比齒輪及其他傳動齒輪的修復.
參考文獻:
〔1〕橡膠工業手冊第七分冊 化學工業出版社,1982
〔2〕材料力學 浙江大學主編 人民教育出版社,1979
〔3〕機械設計手冊(第三版) 化學工業出版社,1993
〔4〕實用機械傳動設計手冊 科學出版社。1994
一、引言
液壓控制技術是以流體力學、液壓傳動和液力傳動為基礎,應用現代控制理論、模糊控制理論,將計算機技術、集成傳感器技術應用到液壓技術和電子技術中,為實現機械工程自動化或生產現代化而發展起來的一門技術,它廣泛的應用于國民經濟的各行各業,在農業、化工、輕紡、交通運輸、機械制造中都有廣泛的應用,尤其在高、新、尖裝備中更為突出。隨著機電一體化的進程不斷加快,技術裝各的工作精度、響應速度和自動化程度的要求不斷提高,對液壓控制技術的要求也越來越高,文章基于此,首先分析了液壓伺服控制系統的工作特點,并進一步探討了液壓傳動的優點和缺點和改造方向。
二、液壓伺服控制系統原理
目前以高壓液體作為驅動源的伺服系統在各行各業應用十分的廣泛,液壓伺服控制具有以下優點:易于實現直線運動的速度位移及力控制,驅動力、力矩和功率大,尺寸小重量輕,加速性能好,響應速度快,控制精度高,穩定性容易保證等。
液壓伺服控制系統的工作特點:(1)在系統的輸出和輸入之間存在反饋連接,從而組成閉環控制系統。反饋介質可以是機械的,電氣的、氣動的、液壓的或它們的組合形式。(2)系統的主反饋是負反饋,即反饋信號與輸入信號相反,兩者相比較得偏差信號控制液壓能源,輸入到液壓元件的能量,使其向減小偏差的方向移動,既以偏差來減小偏差。(3)系統的輸入信號的功率很小,而系統的輸出功率可以達到很大。因此它是一個功率放大裝置,功率放大所需的能量由液壓能源供給,供給能量的控制是根據伺服系統偏差大小自動進行的。
綜上所述,液壓伺服控制系統的工作原理就是流體動力的反饋控制。即利用反饋連接得到偏差信號,再利用偏差信號去控制液壓能源輸入到系統的能量,使系統向著減小偏差的方向變化,從而使系統的實際輸出與希望值相符。
在液壓伺服控制系統中,控制信號的形式有機液伺服系統、電液伺服系統和氣液伺服系統。機液伺服系統中系統的給定、反饋和比較環節采用機械構件,常用機舵面操縱系統、汽車轉向裝置和液壓仿形機床及工程機械。但反饋機構中的摩擦、間隙和慣性會對系統精度產生不利影響。電液伺服系統中誤差信號的檢測、校正和初始放大采用電氣和電子元件或計算機,形成模擬伺服系統、數字伺服系統或數字模擬混合伺服系統。電液伺服系統具有控制精度高、響應速度高、信號處理靈活和應用廣泛等優點,可以組成位置、速度和力等方面的伺服系統。
三、液壓傳動帕優點和缺點
液壓傳動系統的主要優點液壓傳動之所以能得到廣泛的應用,是因為它與機械傳動、電氣傳動相比,具有以下主要優點:
1液壓傳動是由油路連接,借助油管的連接可以方便靈活的布置傳動機構,這是比機械傳動優越的地方。例如,在井下抽取石油的泵可采用液壓傳動來驅動,以克服長驅動軸效率低的缺點。由于液壓缸的推力很大,且容易布置。在挖掘機等重型工程機械上已基本取代了老式的機械傳動,不僅操作方便,而且外形美觀大方。
2液壓傳動裝置的重量輕、結構緊湊、慣性小。例如相同功率液壓馬達的體積為電動機的12%~13%。液壓泵和液壓馬達單位功率的體積目前是發電機和電動機的1/10,可在大范圍內實現無級調速。借助閥或變量泵、變量馬達可實現無級調速,調速范圍可達1:2000,并可在液壓裝置運行的過程中進行調速。
3傳遞運動均勻平穩,負載變化時速度較穩定。因此,金屬切削機床中磨床的傳動現在幾乎都采用液壓傳動。液壓裝置易于實現過載保護,使用安全、可靠,不會因過載而造成主件損壞:各液壓元件能同時自行,因此使用壽命長。液壓傳動容易實現自動化。借助于各種控制閥,特別是采用液壓控制和電氣控制結合使用時,能很容易的實現復雜的自動工作循環,而且可以實現遙控。液壓元件己實現了標準化、系列化、和通用化,便于設計、制造和推廣使用。
液壓傳動系統的主要缺點:1液壓系統的漏油等因素,影響運動的平穩性和正確性,使液壓傳動不能保證嚴格的傳動比:2液壓傳動對油溫的變化比較敏感,溫度變化時,液體勃性變化引起運動特性變化,使工作穩定性受到影響,所以不宜在溫度變化很大的環境條件下工作:3為了減少泄漏以及滿足某些性能上的要求,液壓元件制造和裝配精度要求比較高,加工工藝比較復雜。液壓傳動要求有單獨的能源,不像電源那樣使用方便。液壓系統發生的故障不易檢查和排除。
總之,液壓傳動的優點是主要的,隨著設計制造和使用水平的不斷提高,有些缺點正在逐步加以克服。
四、機床數控改造方向
(一)加工精度。精度是機床必須保證的一項性能指標。位置伺服控制系統的位置精度在很大程度上決定了數控機床的加工精度。因此位置精度是一個極為重要的指標。為了保證有足夠的位置精度,一方面是正確選擇系統中開環放大倍數的大小,另一方面是對位置檢測元件提出精度的要求。因為在閉環控制系統中,對于檢測元件本身的誤差和被檢測量的偏差是很難區分出來的,反饋檢測元件的精度對系統的精度常常起著決定性的作用。在設計數控機床、尤其是高精度或太中型數控機床時,必須精心選用檢測元件。所選擇的測量系統的分辨率或脈沖當量,一般要求比加工精度高一個數量級。總之,高精度的控制系統必須有高精度的檢測元件作為保證。
(二)先局部后整體。確定改造步驟時,應把整個電氣設備部分改造先分成若干個子系統進行,如數控系統、測量系統、主軸、進給系統、面板控制與強電部分等,待各系統基本成型后再互聯完成全系統工作。這樣可使改造工作減少遺漏和差錯。在每個子系統工作中,應先做技術性較低的、工作量較大的工作,然后做技術性高的、要求精細的工作,做到先易后難、先局部后整體,有條不紊、循序漸進。
[1]肖人濟.利用CAD實現參數化設計[J].機械設計,2007(4).
[2]鄭清燕.基于CAD的快速設計的若干關鍵技術研究[J].機械制造,2008(2).
[3]陳煒,董洪.實現智能化CAD的汽車覆蓋件模具結構設計[J].機械設計于研究,2009(4).
[4]紀陳懇.在CAD開發中實現參數化設計模式研究[J].機械設計,2010(5).
[5]陳衛偉.CAD參數化設計在機械制造中的應用[J].機械設計與制造,2009(14).
[6]段約光.基于工程數據庫的CAD系統參數設計研究[J].模具工業,2008(2).
[7]韓冠宇.智能化機械傳動裝置CAD系統[J].機械設計,2009(5).
參考文獻
[1]國土資源部.第二次全國土地調查培訓教材[M].北京:中國農業出版社,2007.
[2]馬俊海,呂長廣.全野外數字測圖技術的現狀與發展趨勢[J].測繪與空間地理信息,2006,29(5):15—17.
[3]佟士懋.AutoCADActiveX/VBA二次開發技術基礎及應用實例[M].北京:國防工業出版社,2006.
[4]梁雪春,崔洪斌,吳義忠.AutoCAD實用教程[M].北京:人民郵電出版社,1998.
參考文獻
[1][美]DonaldA.Neamen著,趙桂欽,卜艷萍.譯,電子電路分析與設計.電子工業出版社,2003.
[2]ConnellyJA,ChoiP.MacromodelingwithSPICE,Prentice-Hall,1995.
[3]FenicalLH.Pspice:ATutorlal>Prentice-Hall,1992.
[4]謝嘉奎主編,電子線路.高等教育出版社,2000.
[參考文獻]
[1]金映麗,王繼軍,顧宏民,蝸輪蝸桿傳動CAD系統的研究與開發[J.沈陽工業大學學報,2004。26(2):124-126。
[2]喬桂玲,呂莉,蝸輪蝸桿的參數化設計與繪圖[J],煤礦機械,2007,28(2):85-88。
液壓伺服控制系統的工作特點:(1)在系統的輸出和輸入之間存在反饋連接,從而組成閉環控制系統。反饋介質可以是機械的,電氣的、氣動的、液壓的或它們的組合形式。(2)系統的主反饋是負反饋,即反饋信號與輸入信號相反,兩者相比較得偏差信號控制液壓能源,輸入到液壓元件的能量,使其向減小偏差的方向移動,既以偏差來減小偏差。(3)系統的輸入信號的功率很小,而系統的輸出功率可以達到很大。因此它是一個功率放大裝置,功率放大所需的能量由液壓能源供給,供給能量的控制是根據伺服系統偏差大小自動進行的。
綜上所述,液壓伺服控制系統的工作原理就是流體動力的反饋控制。即利用反饋連接得到偏差信號,再利用偏差信號去控制液壓能源輸入到系統的能量,使系統向著減小偏差的方向變化,從而使系統的實際輸出與希望值相符。
在液壓伺服控制系統中,控制信號的形式有機液伺服系統、電液伺服系統和氣液伺服系統。機液伺服系統中系統的給定、反饋和比較環節采用機械構件,常用機舵面操縱系統、汽車轉向裝置和液壓仿形機床及工程機械。但反饋機構中的摩擦、間隙和慣性會對系統精度產生不利影響。電液伺服系統中誤差信號的檢測、校正和初始放大采用電氣和電子元件或計算機,形成模擬伺服系統、數字伺服系統或數字模擬混合伺服系統。電液伺服系統具有控制精度高、響應速度高、信號處理靈活和應用廣泛等優點,可以組成位置、速度和力等方面的伺服系統。
2、液壓傳動帕優點和缺點
液壓傳動系統的主要優點液壓傳動之所以能得到廣泛的應用,是因為它與機械傳動、電氣傳動相比,具有以下主要優點:
1液壓傳動是由油路連接,借助油管的連接可以方便靈活的布置傳動機構,這是比機械傳動優越的地方。例如,在井下抽取石油的泵可采用液壓傳動來驅動,以克服長驅動軸效率低的缺點。由于液壓缸的推力很大,且容易布置。在挖掘機等重型工程機械上已基本取代了老式的機械傳動,不僅操作方便,而且外形美觀大方。
2液壓傳動裝置的重量輕、結構緊湊、慣性小。例如相同功率液壓馬達的體積為電動機的12%~13%。液壓泵和液壓馬達單位功率的體積目前是發電機和電動機的1/10,可在大范圍內實現無級調速。借助閥或變量泵、變量馬達可實現無級調速,調速范圍可達1:2000,并可在液壓裝置運行的過程中進行調速。
3傳遞運動均勻平穩,負載變化時速度較穩定。因此,金屬切削機床中磨床的傳動現在幾乎都采用液壓傳動。液壓裝置易于實現過載保護,使用安全、可靠,不會因過載而造成主件損壞:各液壓元件能同時自行,因此使用壽命長。液壓傳動容易實現自動化。借助于各種控制閥,特別是采用液壓控制和電氣控制結合使用時,能很容易的實現復雜的自動工作循環,而且可以實現遙控。液壓元件己實現了標準化、系列化、和通用化,便于設計、制造和推廣使用。
液壓傳動系統的主要缺點:1液壓系統的漏油等因素,影響運動的平穩性和正確性,使液壓傳動不能保證嚴格的傳動比:2液壓傳動對油溫的變化比較敏感,溫度變化時,液體勃性變化引起運動特性變化,使工作穩定性受到影響,所以不宜在溫度變化很大的環境條件下工作:3為了減少泄漏以及滿足某些性能上的要求,液壓元件制造和裝配精度要求比較高,加工工藝比較復雜。液壓傳動要求有單獨的能源,不像電源那樣使用方便。液壓系統發生的故障不易檢查和排除。
總之,液壓傳動的優點是主要的,隨著設計制造和使用水平的不斷提高,有些缺點正在逐步加以克服。
3、機床數控改造方向
(一)加工精度。精度是機床必須保證的一項性能指標。位置伺服控制系統的位置精度在很大程度上決定了數控機床的加工精度。因此位置精度是一個極為重要的指標。為了保證有足夠的位置精度,一方面是正確選擇系統中開環放大倍數的大小,另一方面是對位置檢測元件提出精度的要求。因為在閉環控制系統中,對于檢測元件本身的誤差和被檢測量的偏差是很難區分出來的,反饋檢測元件的精度對系統的精度常常起著決定性的作用。在設計數控機床、尤其是高精度或太中型數控機床時,必須精心選用檢測元件。所選擇的測量系統的分辨率或脈沖當量,一般要求比加工精度高一個數量級。總之,高精度的控制系統必須有高精度的檢測元件作為保證。
(二)先局部后整體。確定改造步驟時,應把整個電氣設備部分改造先分成若干個子系統進行,如數控系統、測量系統、主軸、進給系統、面板控制與強電部分等,待各系統基本成型后再互聯完成全系統工作。這樣可使改造工作減少遺漏和差錯。在每個子系統工作中,應先做技術性較低的、工作量較大的工作,然后做技術性高的、要求精細的工作,做到先易后難、先局部后整體,有條不紊、循序漸進。
(三)提高可靠性。數控機床是一種高精度、高效率的自動化設備,如果發生故障其損失就更大,所以提高數控機床的可靠性就顯得尤為重要。可靠度是評價可靠性的主要定量指標之一,其定義為:產品在規定條件下和規定時間內,完成規定功能的概率。對數控機床來說,它的規定條件是指其環境條件、工作條件及工作方式等,例如溫度、濕度、振動、電源、干擾強度和操作規程等。這里的功能主要指數控機床的使用功能,例如數控機床的各種機能,伺服性能等。
很多創新成果在取得以后回望,當時的設想都是三個字――“不可能”。然而,機會往往就蘊藏在這諸多“不可能”之中。趙亞平教授深知這一點。多年來,他鎖定新型環面蝸桿傳動、齒輪嚙合理論等方面進行研究與開發,其創新成果應用前景廣闊,深受學界好評。
二包環面蝸桿傳動具備一系列優良特性,但是對各種誤差變形十分敏感,
限制了其推廣應用。平面二包傳動,由于蝸桿邊齒變尖與根切的限制,使其無法應用于蝸桿多頭數或小傳動比的場合。趙亞平據此提出了雙圓環面二包傳動這種新型環面蝸桿傳動裝置,克服了上述不足。他提出的兩點下山割線法(DPDS方法)是研究線共軛曲面嚙合特性的有力數學工具。在研究過程中,他不但注重考察誘導主曲率和滑動角等局部嚙合特性參數,而且注重考查蝸輪齒面共軛區范圍,蝸桿工作長度及瞬時接觸線的分布等全局嚙合特性,從而豐富發展了蝸桿副的嚙合幾何學。目前,雙圓環面二包傳動作為一種新型機械傳動裝置,已經獲得多項專利授權。
業內人士都知道,標準二包傳動,蝸輪齒面中部存在二次接觸區,瞬時接觸線相互交叉,接觸頻率高,容易發生疲勞點蝕,是蝸輪齒面的薄弱環節。可以通過角修形,自然地切去蝸輪齒面的二次接觸區,使原接觸區和新接觸區都和蝸桿螺旋面密切,從而大幅度地提高二包傳動的嚙合質量。趙亞平在此基礎上導出了一般化的角修形條件,指出了角修形的物理意義;數字化地論證了原接觸區和新接觸區都和蝸桿螺旋面密切,但密切的程度有所不同;闡述了角修形切除二次接觸區、同時使得蝸桿工作長度變短的機理。相關結果發表于國際期刊Science China Technological Sciences,審稿意見認為:“論文主要內容是對采用作者提出的角修正的雙圓環面二次包絡環面蝸桿傳動齒面嚙合情況進行分析。為此主要工作是建立傳動數學模型及其嚙合特性方程,并進行實例分析。論文對于該種傳動性能研究具有重要的指導意義。有發表價值。雙圓環面二次包絡環面蝸桿傳動屬尚未充分研究和開發的環面蝸桿傳動,開展相關研究,特別是采用修形技術提高其嚙合性能具有一定的理論意義。具有一定的理論價值。算例丙的蝸桿頭數達到12,遠遠突破一般蝸桿傳動的情況。”相關論文獲得過湖北省、及湖北省機械工程學會的優秀論文獎勵。目前,該研究已獲得角修正雙圓環面二包傳動及其制造方法的發明專利授權。
除此之外,針對標準傳動存在二次接觸區,嚙合性能有待進一步提高和角修形傳動雖然嚙合性能優良,但制造工藝比較復雜的問題,趙亞平提出了高度修形、中心距修形及傳動比修形等一系列制造工藝簡單且修形效果優秀的修形方案,使得環面蝸桿副雙線接觸的機理有了清晰明確的解釋。同時,他還對環面蝸桿傳動特性進行了研究,運用彈流理論和齒輪嚙合理論,導出了任意嚙合點處,卷吸速度、角和彈流膜厚系數的計算公式。擺脫開材料、載荷等因素的影響,以角反映成膜條件,以彈流膜厚系數反映油膜厚度,便于衡量整個接觸區內特性的差異,有利于分析工藝參數對蝸桿副性能的影響。有關結果曾經在CIST2008&ITS-IFToMM2008(北京)學術會議上宣讀,并發表于國際期刊TribologyTransactions。
致力于解決生產實際中的問題
出身工科背景,趙亞平一直希望自己的研究成果能夠得到推廣應用,服務經濟社會發展。為此,他多方探索,并取得了一系列成果。
在生產過程中,由于能夠實現多齒雙線接觸,各類環面蝸桿傳動對各種誤差變形都比較敏感。這是限制環面蝸桿傳動應用推廣的主要問題,也是環面蝸桿傳動的主要不足之處。而解決這個問題辦法之一,是通過失配修形,使得蝸輪副變瞬時線接觸為瞬時的點接觸。當然,這里的所謂點接觸是理論上的。實際上,由于齒面的彈性,受載之后,瞬時接觸點擴展成瞬時接觸橢圓,沿接觸跡線眾瞬時接觸橢圓集成齒面上的接觸區。上述失配修形方法,早已成功應用于錐齒輪傳動和準雙曲面齒輪傳動。但是對于環面蝸桿傳動,相關研究進展比較緩慢,主要是因為,環面蝸桿副的齒面非常復雜,沒有找到有效的方法計算瞬時接觸點。
趙亞平結合自己在相關領域的經驗,提出了兩階段下山割線法(TSDS方法),用于計算失配環面蝸桿傳動的瞬時接觸點。該法無需計算包含偏導數的Jacobi矩陣,對迭代初值的敏感性低,還能克服迭代過程中的奇異性,適宜用來求解復雜的非線性方程組;改進了確定點接觸失配齒輪副瞬時接觸橢圓的局部綜合方法,使得瞬時接觸點鄰域內曲率干涉的判別更為合理;發現以標準蝸桿和Ⅰ型蝸輪相配,組成的失配蝸輪副對各種裝配誤差均不敏感,能夠避免曲率干涉,實現較好的點接觸,而且蝸桿工作部分較長,具備可觀的承載能力;由具體算例計算出蝸輪轉角誤差曲線,表明了它具有近似拋物線形狀,說明所提出的失配方式,具有一定的減輕振動、吸收沖擊的效果。有關結果發表于國際期刊Computer-AidedDesign。
他的研究為失配環面蝸桿副的正確設計奠定了基礎。
主管單位:中國航空工業第一集團公司
主辦單位:中國航空學會
出版周期:月刊
出版地址:北京市
語
種:中文
開
本:大16開
國際刊號:1000-8055
國內刊號:11-2297/V
郵發代號:
發行范圍:國內外統一發行
創刊時間:1986
期刊收錄:
CA 化學文摘(美)(2009)
CBST 科學技術文獻速報(日)(2009)
Pж(AJ) 文摘雜志(俄)(2009)
EI 工程索引(美)(2009)
中國科學引文數據庫(CSCD―2008)
核心期刊:
中文核心期刊(2008)
中文核心期刊(2004)
中文核心期刊(2000)
中文核心期刊(1996)
中文核心期刊(1992)
期刊榮譽:
Caj-cd規范獲獎期刊
聯系方式
一、改造要求
CA6140車床主要用于對中小型軸類、盤類及螺紋零件的加工,加工這些零件工藝上要求機床應該滿足以下要求:(一)能夠控制主軸正反轉,實現不同切削速度的主軸變速;(二)刀架能夠實現縱向和橫向的進給運動,并具有在換刀點自動改變四個刀位完成選擇刀具的功能;(三)加工螺紋時,應保證主軸轉一轉,刀架移動一個加工螺紋的螺距或導程。
二、機械部分的改造
(一)降速比計算
(二)轉動慣量計算
(三)剛度計算
三、安裝調試
安裝調試必須按照事先確定好步驟和要求進行,調試中首先測試安全哦保護系統的靈敏度,以防止人身和設備事故發生,調試現場必須要清理干凈,各運動坐標拖板處于全行程的中心位置,先空載實驗,然后加載實驗。
四、結語
經過大量的實踐證明,普通數控機床改造具有一定的可行性、實用性和穩定性,企業要在激烈的市場競爭中獲得生存、得到發展,它必須在最短的時間內以優異的質量、低廉的成本,制造出合乎市場需要的、性能合適的產品,而產品質量的優劣,制造周期的快慢,生產成本的高低,又往往受工廠現有加工設備的直接影響。目前,采用先進的數控機床,已成為我國制造技術發展的總趨勢。購買新的數控機床是提高數控化率的主要途徑,而改造舊機床、配備數控系統把普通機床改裝成數控機床也是提高機床數控化率的一條有效途徑。
參考文獻:
引言
齒輪傳動是機械傳動中應用最廣泛的一種傳動方式,由于漸開線的特點,漸開線齒輪又是齒輪傳動最常用的齒輪類型。近年來隨著CAD/CAE/CAM/CAPP技術的迅速發展,為了便于利用計算機仿真軟件對齒輪傳動進行運動、振動噪音、輪齒修型等分析,齒輪的精確參數化建模已經成為一個必要過程,而齒輪的建模精度又對計算結果起到決定性的作用。漸開線直齒圓柱齒輪由于螺旋角為零,因此精確建模已經沒有問題,而漸開線斜齒輪由于齒面為空間漸開線螺旋面,且其端面齒形與法面齒形不同,三維精確參數化建模過程比較困難。在目前所能查找的論文中提出了很多斜齒輪精確參數化建模的方法,但仔細研究發現里面所提到的很多方法根本就無法實現斜齒輪的精確參數化建模,為此先從理論上對斜齒輪參數化精確建模進行討論。
一、參數化建模中齒數與模型分析
在斜齒輪的精確建模中有一部分文獻沒有考慮到齒數對建模的影響[1][3][4][5][6][7][8]。沒有考慮齒根圓與基圓之間的大小關系,根據斜齒輪的齒根圓與基圓公式有:
df=d-2?mn(h*an+c*n)(1)
db=d?cosat(2)
df=db=d-2?mn(h*an+c*n)-d?cosat(3)
由公式(3)可以得到
=z?--2.5(4)
如果斜齒輪的齒根圓 與基圓 相等,則公式(4)右邊等于零。
z?--2.5(5)
對應標準齒輪有an=200,這樣斜齒輪的齒根圓與基圓之間的大小關系就是螺旋角β、齒數z和法面模數mn的函數。當齒根圓與基圓相等時,那么斜齒輪的齒數z與斜齒輪的螺旋角β就成一函數關系,在此把這個函數關系用z=f(β)來表示,這說明斜齒輪的齒根圓與基圓相等的分界線是變化的,而不是恒定的。
齒輪精確建模時,當齒根圓小于基圓的時候,齒根圓與基圓之間是沒有漸開線的,這部分曲線是刀具的齒頂加工出來的過渡曲線;當齒根圓大于基圓時,齒廓曲線全部為漸開線。所以斜齒輪精確建模一定要分這兩種情況來討論,為了方便在此用表格來給出兩者的數據關系。
二、螺旋角與斜齒輪模型的關系分析
現有很多論文中斜齒輪的精確參數化建模都是先利用漸開線表達式生成漸開線一條齒廓曲線,把這個端面曲線沿螺旋線進行沿引導線“掃掠”或“曲面已掃掠”命令來生成一個斜齒輪的輪齒,然后利用環形陣列生成斜齒輪的精確模型[1][2][3][4][5][6][7][8]。
(一)螺旋角的關系推導
斜齒輪的螺旋角是指分度圓上螺旋線的切線與軸線之間所夾的角度。由下推出[10]:
tanβ=(6)
L-螺旋線的導程;
π?d-斜齒輪分度圓上的直徑;
可以看出螺旋角是齒輪分度圓的一個函數,在同一齒輪中,任意圓周di上的螺旋角為:
tanβi=(7)
通過公式(7)可以看出,在不同的圓周上螺旋角是不同的。
(二)沿引導線掃掠策略
掃掠體的數學模型是,先進行路徑規劃,即將掃掠路徑進行離散,求解出t時刻通過掃掠路徑曲線上節點si的坐標,然后確定在每個節點上的投影面(法平面)方程,然后將物體向投影面(法平面)投影,當時間間隔足夠小時,在滿足一定的精度情況下,把時刻t和t+t時刻之間生成的掃掠體看成是由這些投影曲線組成的面域繞轉動極軸轉動生成的實體。
為了簡化求解過程, 掃掠路徑通常寫成式的參數形式:
那么要想對一個物體進行掃掠必須給出掃掠路徑和掃掠物體,在斜齒輪精確建模中,掃掠路徑是空間螺旋線,掃掠物體為漸開線的齒廓,這樣掃掠出來的齒形隨可以參數化,但在齒形上的每一點的法線都為掃掠路徑的切矢量,如果在創建時,給定的掃掠路徑是分度圓上的螺旋線(在軟件中這個命令是單參數的),則得到的輪齒是任意一點的螺旋角都等于分度圓上的螺旋角,通過公式(7)可以看出這是不正確的。三維模型圖參考圖1.4。
(三)沿多條引導線已掃掠策略
一條螺旋線不可能得到正確的輪齒,如果采用多條螺旋線做掃掠路徑只能使用軟件中的“曲面已掃掠”命令來實現,當掃掠路徑比較多的時候可以得到比較精確的輪齒模型,但這個命令是不支持參數化的,也得不到參數化模型。
下面用一個實例進行驗證:
圖四是將端面的一個齒廓面沿引導線掃掠生成的輪齒形狀,此螺旋角為β=200,可以看出輪齒的形狀發生了嚴重的扭曲,且隨著螺旋角的度數增大,扭曲現象就越明顯。
圖五是將端面的一個齒廓面利用曲面里面的已掃掠生成的輪齒形狀,可以看出當使用一條螺旋線的時候,輪齒發生了扭曲,不可能產生精確地輪齒。當增多引導引導線串時,扭曲程度降低,另外通過圖三與圖二的對比可以看出兩個操作都產生了扭曲,但扭曲程度是不一樣的。
通過上述論證,要想得到參數化的精確模型,必須使用掃掠命令來實現,可以對此命令進行二次開發,給定分度圓上的螺旋角,然后設定漸開線上上段的個點螺旋角的值是線性遞增的,下半段式線性遞減的,使遞增和遞減的值分別等于齒頂圓上螺旋角和齒根圓上的螺旋角,這樣既可以參數化又可得到精確的模型
三、陣列操作與參數化分析
在很多文獻中當單個齒生成后通過陣列的方法來生成整個斜齒輪模型,通常在軟件中有兩種生成方法:第一種是特征操作下的陣列(引用下的環形陣列)第二中方法是變換下的環形陣列,這兩種方法本質上是不同的,引用下的環形陣列是不能參數化的,而特征操作下的環形陣列是可以參數化的。
所以要想進行參數化設計必須采用特征操作下的沿引導線掃掠來生成輪齒,然后再進行特征操作下的環形陣列來得到參數化模型。
四、結束語
本文主要對已有的斜齒輪精確參數化建模的方法進行分析,推導出其不能得到精確參數化模型的理論原因,為以后斜齒輪的精確建模提供理論上的參考依據。精確模型一定是理論上推導證明出來的精確,還要注意當通過計算機算法去實現出來后一定存在誤差的,那么必須對誤差進行分析,確定誤差的范圍是不是在后續分析的允許范圍內。
參考文獻:
[1]白劍鋒等.UG在漸開線斜齒輪參數化設計中的應用[J].機械設計與制造,2006,(70).
[2]邵家云,任豐蘭.UG中漸開線斜齒輪的全參數化精確建模[J].農機使用與維修,2009,(1).
[3]趙向前,徐洪濤.基于UG4.0的斜齒圓柱齒輪的三維精確參數化建模[J].金屬加工,2008,(2).
[4]魯春艷.基于UG的齒輪齒條式轉向器的虛擬設計與分析[J].蘇州市職業大學學報,2009,(3).
[5]徐雪松,畢鳳榮.基于UG的漸開線斜齒輪參數化建模研究[J].機械設計與制造,2003,(12).
[6]孫江宏,姚文席,吳平良.基于UG的斜齒輪三維參數化設計方法-掃描成型法[J].2003,(2).
[7]徐江敏,孟慧亮,蘇石川.漸開線斜齒輪的參數化設計與應用[J].計算機應用技術,2008,(11).