緒論:寫作既是個人情感的抒發,也是對學術真理的探索,歡迎閱讀由發表云整理的11篇自動控制技術論文范文,希望它們能為您的寫作提供參考和啟發。
一、EPB與傳統手制動相比的優點
1.1EPB系統可以在發動機熄火后自動施加駐車制動。駐車方便、可靠,可防止意外的釋放(比如小孩、偷盜等)。
1.2不同駕駛員的力量大小有別,手駐車制動桿的駐車制動可能由此對制動力的實際作用不同。而對于EPB,制動力量是固定的,不會因人而異,出現偏差。
1.3可在緊急狀態下組委行車制動用。
二、EPB的功能
2.1基本功能:通過按鈕實現傳統手剎的靜態駐車和靜態釋放功能。
2.2動態功能:行車時,若不踩踏板剎車,通過EPB按鈕,一樣也可以實現制動功能。
2.3“熄火控制”模式:當汽車拔鑰匙熄火時,自動啟用駐車制動,發動機不打火駐車不能解除。
2.4開車釋放功能:當駕駛員開車時,踩油門,掛擋后自動解除駐車。
2.5啟動約束:點火關閉,釋放約束模式(保護兒童),不用操作制動踏板,即可釋放約束模式。
2.6緊急釋放功能:當電子駐車沒電需要解除駐車時,可用專門的釋放工具釋放駐車。
三、拉線式EPB的組成及各部件的作用
3.1拉線。拉線和傳統的駐車系統中拉線所起的作用完全一樣,就是把力從EPB總成傳遞到駐車制動器上實現駐車功能。拉線式EPB有單拉線和雙拉線兩種。
單、雙拉線有各自的優點和缺點。相比較起來雙拉線有較大的拉線效率,拉線行程短,但布置沒單拉線靈活,產生相同的拉力,控制器需要加載的力大。工作時,雙拉線EPB控制器同時帶動兩根拉線運動,帶動制動器駐車,而單拉線時,EPB控制器是只帶動了一根拉線,然后通過拉索平衡器此拉線帶動后面的兩根拉線駐車。
單拉線式樣的EPB,一根拉線帶動兩根拉線的原理為:第一根拉線的芯線在控制器的帶動下產生移動,其帶動拉線向右移動,然后因為第一根拉線受力彎曲,第一根拉線通過固定在其拉線護套上面的平衡器帶動拉線1向左移動,從而實現了一根拉線帶動兩根拉線移動的目的。
3.2按鈕。通過按或者拉按鈕控制EPB駐車和解除駐車,按鈕上有背景燈,提醒駕駛者是否已工作。
3.3緊急工具。在EPB因斷電不工作時,實現駐車解除功能。
3.4電機。EPB工作時的動力來源,由其來帶動齒輪機構工作實現駐車。(有人僅靠電子駐車紙面意思可能會擔心駐車后,出現沒電的情況怎么辦?實際上電子駐車只是靠電觸發齒輪機構工作,最終使車長時間駐車的還是機械機構,并且國家法規中也明確要求,駐車要用可靠的機械機構來完成)。
3.5齒輪機構。不同廠家EPB的此部分機構的工作原理不一定相同但其作用是一樣的。都是力的傳遞機構,把力由電機齒輪的轉動轉化成拉線方向上力。其齒輪結構的工作原理如右圖電機帶動拉線所在的外齒輪機構和內齒輪機構旋轉,因為旋轉方向相反,帶動連接在內外齒輪機構的拉線運動,實現駐車。
3.6ECU和傳感器。ECU用來控制EPB對外的信息交流和反饋。傳感器用來感應拉力的大小。
四、EPB總成的工作原理和其功能的實現原理
4.1EPB總成的工作原理。拉線式EPB工作原理為:通過開關給ECU一個通斷信號,EPB的ECU控制電機進行旋轉,然后由內部的齒輪機構把此力輸出到拉線上,由拉線帶動制動器進行駐車。
4.2EPB各功能的實現原理
(1)基本功能。最基本的功能,靜態釋放和靜態駐車功能,通過按鈕駐車和解除駐車此工作原理簡單,也就是上面的EPB工作原理。
(2)EPB賣點之一的動態功能。當車在行車狀態,速度大于12km/h,若按下EPB按鈕,ECU指揮馬達帶動拉線駐車,當車輪要抱死,有滑移的傾向時,ECU通過CAN得到這個信號后,會使拉線力減小,以便不使車輪抱死,如此循環,直至車停下為止。雖然EPB有此功能,但各個EPB廠家,并不推薦客戶把EPB當作行車制動器使用,并且還明確要求客戶,此功能只能在常規制動器失效或不可使用踏板的緊急情況下才能使用,這是因為在行車中,駐車制動器啟動后,那么就把制動力全部加在后輪,對后制動器的損害是很大的。
(3)“熄火控制”模式。發動機熄火后,通過CAN把此信息傳遞給ECU,ECU指揮EPB駐車。
(4)EPB的另一賣點功能:開車釋放功能。要實現該功能,則EBP系統需要知道駕駛員是否希望車輛開始行駛。對自動擋車輛來說,EPB可以通過變速器信息及油門信息了解車輛狀態。然后ECU指揮EPB釋放駐車。而對手動擋車輛來說,原有的配置所能提供的信息無法確認駕駛員的期望。為了實現該功能,需要在車輛上加裝檔位傳感器及離合器傳感器。
(5)緊急釋放功能。用專門開發的緊急釋放工具來實現此功能。工具的工作原理為,用專門開發的EPB工具,先插入緊急工具孔,然后旋轉,使齒輪旋轉帶動渦桿移動,解除駐車。有時為了使解除駐車方便,或者不便于使用剛性的緊急釋放工具,也可以使用易曲工具,實現過程為:把緊急釋放工具由剛性改成可彎曲的易曲工具,然后根據EPB的布置位置,設計合理的導向管,設計導向管的原則為將來在使用工具時比較方便,不需要拆卸其它零件,或者鉆到車下。導向管一端,另一端固定死在電子駐車工具孔上,使用時,取出緊急工具,把工具從導向管端插入,順著導向管,把工具連接到電子駐車上,然后轉動工具搖把,即可釋放駐車。在開發易曲工具中需要注意的是:1.工具的易曲長度不能太長否則會因工具彎曲端過長而使傳遞到電子駐車的力矩解除不了駐車。2.導向管扭曲的幅度不能過于大,否則工具在通過導管時的難度就很大,甚至通不過導管。
五、拉線式EPB的布置
5.1EPB的布置
EPB的布置需要注意以下幾點:
(1)若EPB布置在車身下,要設計合理的支架,力求把EPB包起來,防止車底下高速飛起的石子打在EPB殼體上。(2)注意保證EPB周圍的溫度不能過高,要在其工作溫度范圍內。(3)注意選擇合理的緩沖墊來起到防震的效果。(4)EPB位置的選擇,要考慮到將來緊急工具使用的方便性。
5.2拉線的布置
拉線的布置需要注意以下幾點:
(1)拉線之間的間隙要求,需要滿足一定要求。(2)單拉線式。EPB是由一根拉線帶動后面兩根拉線來實現駐車的,為了實現一根拉線帶動二根拉線,所以布置時一定要保證第一根拉線的末端是可移動的,不能在此處做支架給其固定死。
六、結論
EPB是近來研究的重要成果之一。它替代了手駐車制動,用電子按鈕實現停車制動,且節省了車廂內部的空間。符合現在消費者們希望在車內安裝更多的基本配置和功能的這個趨勢。因此設計小巧的EPB倍受青睞。目前電子駐車在國外已應用的比較普遍。在不久的將來電子駐車也會頻頻裝配在中國的汽車上。
參考文獻:
舒華,姚國平.汽車電子控制技術.北京.人民交通出版社,2002.
2水泵自動控制的應用
水泵自動化可以采用電路系統內的軟件和硬件系統進行結構設計和調整,通過編程操控,對數據進行設置,實現多臺水泵的自動開啟、停止、功能疊加或轉換。實現自動控制,應急處理。采用浮球水位控制原理,調節自動控制標準。在實際的電機傳動水泵自動調節過程中,通過調節電動機的頻率確定功能效果,對水泵的基本效率進行節約處理。減少未使用調頻水泵的調頻次數,提高水泵能源的調頻使用效果,從而提高企業的經濟效益,實現水廠工業頻率調整,結節約不必要的電能費用。變頻技術調節分為交流變直流、直流變交流兩種。在工業生產活動中,交流變直流的應用較為常見,廣泛的應用于工業生產和日常生活中。前者的組成電路由整流器、電路逆流器、過濾器綜合組合,形成變頻裝置設備。將交流電轉換為直流電是依靠整流器完成。整流器是供電設備的逆變裝置。在電路交直流轉換過程中,電路會剩余一部分交流電,將直流電中的交流部分過濾的設備是過濾器裝置。電流過濾器是將電流重新分化,去電電流中不穩定的元素,完成交流電或直流電的平穩過渡,最終實現電流的逆變過程,輸出需要的直流電流或交流電流。電流逆變和電流整流是相互對立的,也是通過調頻控制電路,完成電路橋接。電機應用電路中的電流進行交換處理,實現有效輸出。調節電機的運轉頻率,從而提高電機的運轉速度,確保水泵的有效功率。電機在使用過程中,通過調頻控制技術完善電源的有效功率設定,逐步改善電源的有效頻率,確保頻率的使用效果。逐步增加電機轉速。通過控制電流的使用頻率,提高水泵的使用壽命,改善水泵基礎運行環境,逐步減少水泵的基礎維修費用,降低人力消耗,降低物力消耗,減少噪聲污染水平,確保工作人員的基本工作環境。
建筑電氣自動化控制技術的應用必然需要各種電氣設備的參與,并且設備的質量在整個的建筑電氣自動化控制技術應用中占據著重要的位置,一旦電氣設備存在一定的問題的話就會直接影響到整個建筑電氣自動化控制技術的實施質量,進而影響到后期建筑電氣自動化控制技術的應用,具體來看,設備對于建筑電氣自動化控制技術的影響主要體現在兩個方面:(1)設備自身的問題,電氣設備對于建筑電氣自動化控制技術的影響一個主要的問題就是我們所應用的設備自身存在質量問題,這種質量問題存在的原因有很多,比如設備在生產過程中可能就存在著質量問題,一旦在建筑電氣自動化控制技術應用中采用這些質量不達標設備的話就會影響到建筑電氣自動化控制技術的質量,另外,設備規格不符合我們所需要的要求的話也會影響到建筑電氣自動化控制技術的質量,設備在運輸或者安裝過程中受到一定的損害的話必然也會影響到后期的正常使用;(2)環境因素的影響,電氣設備對于周圍環境的依賴性也是比較強的,尤其是對于電氣設備周圍空間內的溫度和濕度的要求雖然不是特別的苛刻,但是一旦溫度或者濕度變化過大的話也會嚴重的影響設備的正常使用,最終影響建筑電氣自動化控制技術的質量。
1.2技術對建筑電氣自動化控制技術的影響
建筑電氣自動化控制技術作為一種最為新型的技術手段自然也離不開技術的支持,因此,反過來說,技術必然也會對建筑電氣自動化控制技術的質量產生直接影響,技術水平的高低也就直接決定著建筑電氣自動化控制技術運用水平的高低,但是就當前我國的建筑電氣自動化控制技術中的技術水平現狀來看,仍然存在著一些問題,這些問題主要表現在兩個方面:(1)技術升級不及時,雖然建筑電氣自動化控制技術就當前來看算是一種較為新型的技術手段,但是就建筑電氣自動化控制技術本身來說仍然需要不斷地進行技術升級才能更好地適應當前人們對于建筑電氣不斷提高的要求,一旦建筑電氣自動化控制技術升級不及時導致電氣自動化技術落后于人們日益提高的要求的話就會嚴重的影響建筑電氣自動化控制技術的應用價值,也不利于建筑電氣自動化控制技術的發展;(2)在技術管理方面存在一定的缺陷,技術管理對于整個建筑電氣自動化控制技術的重要性不言而喻,一個完善的技術管理體系能夠使得建筑電氣自動化控制技術最大程度的發揮自身的優勢,甚至能夠最為及時的針對自身的不足進行更新換代,而當前我國建筑電氣自動化控制技術不存在完善的技術管理制度和體系,進而就極有可能導致建筑電氣自動化控制技術在具體運用中出現質量問題。
1.3人員對建筑電氣自動化控制技術的影響
建筑電氣自動化控制技術的施工和具體應用都離不開具體人員的操作,因此,人員也會對于建筑電氣自動化控制技術的質量產生重要影響。就建筑電氣自動化控制技術本身而言,其應用的最根本的目的就是發揮自動化功能來減少建筑電氣工程使用中對于人員的依賴,但是這并不代表著在實施中就可以減少人員的使用,或者是降低施工人員的素質,就當前我國建筑電氣自動化控制技術的現狀來看,人員的影響主要表現在以下兩點:(1)專業素質不高,建筑電氣自動化控制技術作為一種新型的科學技術手段,其科技水平相對傳統電氣工程來說更高,因此,就對具體的工作人員提出了更高的要求,尤其是在專業性上更是要求人員具備較高的素質,一旦工作人員專業水平不夠的話就會在很大程度上影響實施的質量,最終影響建筑電氣自動化控制技術的應用效果;(2)缺乏對工作人員的監督,工作質量的高低和監督存在著密切的聯系,如果我們對工作人員的施工質量進行密切監督的話就會在一定程度上提高工作人員施工的質量,進而提高建筑電氣自動化控制技術的水平,而如果監督不到位的話,那么就會很容易使工作人員產生懈怠,甚至會出現工作失誤,最終影響建筑電氣自動化控制技術的質量。
2建筑電氣自動化控制技術的發展方向
2.1在建筑電氣自動化控制技術中融入網絡技術
網絡信息技術作為當前較為先進的另一種科學技術也應該使其在建筑電氣自動化控制技術中發揮一定的作用,網絡技術的合理運用能夠在很大程度上提高建筑電氣自動化控制技術的更新速率,擴展建筑電氣自動化控制技術的應用范圍;并且除此之外,在建筑電氣自動化控制技術中合理的運用網絡技術能夠在很大程度上提高建筑電氣自動化控制技術的管理水平,促進建筑電氣自動化控制技術的快速發展。
2.2加強系統的修復和維護
建筑電氣自動化控制技術在實施和具體應用過程中離不開系統的修復和維護過程,并且建筑電氣自動化控制技術的維護和修復極為關鍵,加強對于建筑電氣自動化控制技術的維護和修復管理能夠提高建筑電氣自動化控制技術的運用水平,確保建筑電氣自動化控制技術的應用穩定性。
2.3提高系統更新頻率
當前科學技術的發展速度越來越快,電氣自動化控制技術的更新也應該緊隨科學技術發展的步伐提高自身系統更新的速率,以滿足當前人們對于建筑電氣自動化控制技術不斷提高的要求。
0 引言
電氣自動化控制技術是建立在電子信息和自動化技術之上的,以電氣控制系統為核心,以電動機為主要傳輸動力,具有自動檢測、信息控制等多項功能,利用自動化技術可使各項電氣設備自主控制完成電力生產任務。將其應用于電力系統中,可有效解決其復雜結構帶來的一系列問題,降低工作難度,減少人工勞動量,進而維護系統穩定運行,提高生產效率。然而在實際應用時,還有一些不足之處應引起重視,促進該技術在未來有更好的發展。
1 電氣自動化技術的功能及其在電力系統中的應用
1.1 功能
首先是自動控制功能,即對電力設備的自動控制,是自動化技術的一個重要體現。多采用分散式控制方式,實現對整個操作系統的控制,運行中若有設備出現異常,自動控制系統會及時發現, 并將故障電路切除,以免有電流經過,使得故障進一步擴大。而電力系統結構龐大,線路復雜,要想準確切斷電路,還需依靠分散控制來完成,所以說自動控制功能是維護系統整體穩定的一個重要保障。
其次是保護功能,受內部運行或外部環境影響,電力設備難免會出現各種故障,進而影響到系統安全。而電氣自動化控制技術則能夠保護設備運行安全,如輸入電壓不穩定時,自動控制系統會控制設備自動將高電壓轉換為低電壓,保護設備內部的元件和導線不被損壞,將可能會出現的風險降至最低,盡可能地保護設備安全。電力設備運行時的承受能力有限,一旦電流過大,必將受損,所以說自動化控制技術的應用,可提高設備的使用壽命。
此外是監督功能,主要是監督不穩定電流,因為電流不穩定時,對設備危害較大,自動化控制系統則能對其加以監督。此時顯示器上的指針會有所偏移,且信號燈閃爍,提示工作人員對線路進行檢查。進而控制不穩定電流,避免故障發生。
1.2 應用
首先是電氣產品的設計,為生產出高質量的產品,設計者必須具備極強的專業知識,并了解當前需要解決的關鍵問題,以及產品的用途和工作環境。以往多以經驗為主,缺少科學性,而且工作量較大,精確度低。而現代化產品則要利用高科技和現代化工具,如計算機等。另外,控制理論也越來越成熟,尤其是專家系統、遺傳算法等的應用,為產品提供了質量保障。
其次是設備故障的診斷,現代化電氣設備功能增多,智能化程度越來越高,故障也變得更加復雜,具有非線性的特點,檢測處理難度加大。傳統的方法顯然已不適用,而當前則逐漸形成了一套設計理論,以此對故障進行檢測。這是一大創新,在智能化產品故障檢測中較為適用,效率很高。當然還可以結合模糊邏輯系統等使用,進一步提升檢測效率。
2 新型電氣自動化控制技術的應用分析
2.1 案例
某電力企業為提高生產效率,降低故障發生頻率,于2003年引進了DCS系統。隨著用電需求的增長,電力系統變得更加復雜多變,DCS系統的應用可控制輸入輸出設備,從而采集系統的有關信息,并進行分析處理,然后對功率計電壓等加以適當調整。該系統以控制系統為基礎,具有分散控制、分級管理、集中操作等功能,在電力生產中一度發揮著重要作用。但隨著電網事業的改革,這種系統的弊端日益顯現,信息處理量有限,抗干擾能力較差,接線復雜,成本昂貴,且反應太慢,往往不能很好地處理瞬態電信號。為此,企業于2007年開始引進并應用電氣監控管理系統(Electric Control System),簡稱ESC系統,這是對計算機、信號處理、現場總線等技術的綜合應用,可對電力系統的自動化裝置進行有效的測量控制,并保護其安全。
2.2 ESC系統
該系統包括以下3層:(1)間隔層:由多個智能元件構成,如直流接地選線裝置、常用電壓保護裝置、自動準同期控制裝置等,可完成系統的專業化功能。多是通過嵌入式軟硬件技術開發的,由CPU、現場總線等設備;(2)通信管理層:主要由通信網絡和相應的管理裝置組成,利用以太網和現場總線將DSC系統、各項智能設備及其他子系統相連,實現其網絡通信工作;(3)站控層:包括各種專業軟件、通訊接口、服務器和監控設備,且軟件都具有數據采集、故障診斷的功能。
2.3 特點和功能
ECS 系統采用通信管理層和站控層組態一體化的設計, 可保證組態調試的一次性完成, 進行調試時可以更加方便, 并且符合人的操作習慣。 并且從整體出發綜合考慮系統的通信功能,保證站控層、通信層、間隔層的通信速度,并開設與 DCS、 MIS、 SIS 的通訊接口。并且 ECS 與 DCS 互相通信是不受限制, 還可以節省大量的通信纜線和變送器。 ECS 采用先進可靠地自動化電氣裝置, 完全可以不受通訊功能限制并可以獨立運行, 保證了系統的安全性和可靠程度。
ECS 系統的間隔層采用保護測控裝置, 抗干擾能力強,適用于復雜環境。且系統還采用了冗余容錯技術, 包括雙現場總線網絡、 站控層設備冗余等多種措施,保證了系統穩定。系統保護測控裝置局采用高性能的 DSP 并 IJ 微處理器,硬件系統采用多 CPU 智能化結構,大大提高了數據的處理速度。
3 結束語
電氣自動化控制技術在電力系統中起著重要作用,可保護系統安全穩定,提高工作效率。在今后,將進一步朝著智能化方向發展,有很多事項需注意,對于其中存在的問題,應及時解決。
參考文獻:
[1]蔣志榮.電氣自動化控制技術的研究[J].黑龍江科技信息,2014(01):109-110.
中圖分類號:[TU992.3] 文獻標識碼:A 文章編號:
1、前言
污水處理是一門涉及化學、物理、生物等多門科學的綜合性技術,其工藝機理復雜,操作要求十分嚴格,實現起來難度較高。如果只憑現場人員手動操作,往往操作繁瑣,勞動強度大,處理效果差。加之我國水污染控制水平較低,尤其是工業廢水的污染控制,投入不足,給環境帶來了嚴重的威脅。因此為了改變我國污水處理控制技術的這種落后現狀,進行污水處理自動控制系統的研究,具有非常現實的意義。當前,污水處理控制領域將計算機技術、智能技術、網絡技術等運用到過程中,實現優化控制,已成為研究熱點。
2、自動控制理論的發展
在工業和現代科學技術的飛速發展的同時,控制理論的發展至今已有100多年的歷史。各個領域中的自動控制系統對控制精度、響應速度、系統穩定性與適應能力的要求越來越高,應用范圍也更加廣泛。特別是自20世紀80年代以來,計算機技術的高速發展,推動了控制理論研究的深入發展。
3.各單元的自動控制系統
3.1 格柵自動控制系統
根據水位差測量儀檢測的格柵前后水位差閾值自動控制機械格柵的運行。當機械格柵停止運行的時間超過設定值時,系統轉由時間控制,自動啟動機械格柵。PLC系統還將按軟件程序自動控制柵渣輸送機、機械格柵的順序啟動、運行、停車以及安全聯鎖保護。水位差設定值,格柵的運行時間及格柵運行周期可調。3.2 水泵自動控制
在泵池設超聲波液位儀表,根據水位測量儀測得的泵房水位值自動控制多臺水泵的啟停運行。當泵房水位高至某一設定的水位值時,PLC系統將按軟件程序自動增加水泵的運行臺數;相反,當泵房水位降至某一設定的水位值時,PLC系統將按軟件程序自動減少水泵的運行臺數。同時,系統累積各個水泵的運行時間,自動輪換水泵,保證各水泵累積運行時間基本相等,使其保持最佳運行狀態。當水位降至干運轉水位時,自動控制全部水泵停止運行。在監控管理系統和就地控制系統的操作面板上可以設定水位值。
3.3 沉砂池自動控制
沉砂池的設備自成系統,隨設備所帶的就地控制箱將帶有啟動時序和停止時序,以及安全保護程序,自動控制整套沉砂池設備的運行。PLC系統將采集沉砂池全部設備的運行狀態,上位監控管理計算機也可遠控整套沉砂池設備的啟動/停止。
3.4 分段進水多級AO生物池控制
現有AO或AAO生物池改造采用分段進水多級AO工藝。主要測控內容有:
――各段進水流量檢測、配水閥門/堰門監控,自動控制各段流量,保證多級AO工藝進水流量分配比,實現合理利用各段硝化容量,充分利用原水中碳源進行反硝化, 達到有效降低出水TN, 并降低運行費用。
――厭氧池氧化還原電位監測,各級缺氧池入口溶解氧監測,各級缺氧池混合液濃度監測,攪拌器運行控制。
――各級好氧池溶解氧監測、空氣流量檢測、曝氣量自動控制。由于污水處理廠的實際運行中, 進水負荷實時變化,DO串級控制策略可根據進水負荷實時調整DO的設定值, 有效地消除進水擾動。
――生物池出水硝氮在線檢測,作為甲醇投加的過程控制參數,及時調整外碳源的投加量,保證出水水質并節省碳源。
――生物池出水氨氮在線檢測,根據出水氨氮值及時調整曝氣量滿足和保證出水水質的要求。
――分段進水多級AO工藝對C/N比的敏感性,具體水質、水量的實時變化,使得分段進水工藝的運行和優化有很大的空間。利用在線監測及智能控制技術,根據進水水質、水量對系統進行實時控制, 提高污染物的去除效率, 降低運行成本,并可提高分段進水生物脫氮工藝的可操作性。
3.5 鼓風機房出口壓力控制
通過壓力變送器檢測空氣總管的壓力,根據設定的壓力值控制鼓風機的運轉臺數、調節鼓風機的導葉片角度,從而保證生物池對空氣的需求量。在保證空氣需求量的前提下,盡可能地節省能耗,壓力控制系統和曝氣量調節系統相互關聯,相互影響,最終使生物池的生物處理過程處在最佳狀態。通過監控管理系統和現場控制系統的操作屏,可以設定鼓風機出口的壓力控制值。
3.6 污泥回流量自動調節
回流污泥量的控制采用比例控制以保證污泥混合液濃度在一定的范圍內。根據生物池的進水量、回流污泥濃度控制回流污泥泵(工頻泵)的運轉臺數或變頻泵的轉速,保證生物池微生物的需要量。通過監控管理系統和現場控制系統的操作屏,可以設定回流污泥比例。
3.7 沉淀池排泥控制
沉淀池的排泥可以根據裝在沉淀池內的泥位計來控制刮泥車的運行,指導排泥。排泥有二種控制方式:按泥位計設定值進行自動排泥,按定時實現自動排泥。
3.8 污泥濃縮自動控制
污泥濃縮機系統控制采用時間控制和手動控制。該系統中設備的啟動順序依次為輸送機、濃縮機、加藥泵、進泥泵、污泥切割機,停止順序與之相反。當藥液制備段的溶液罐的液位低,進泥泵的進泥流量低、系統中任何一臺設備發生故障時,系統停止運行。采用污泥流量比例投加絮凝劑,通過監控管理系統和現場控制系統的操作屏,可以設定每天允許的運行次數及每次運行的時間。
3.9 污泥脫水自動控制
污泥脫水過程按污泥脫水系統自身PLC預先編制的程序控制運行。污泥脫水的程序控制采用時間控制和手動控制。系統設計帶有啟動時序和停止時序,以及安全保護程序。在藥液已制備完成的前提下,設備的啟動次序依次為傾斜式輸送機、水平式輸送機、濃縮脫水一體機、加藥泵、進泥泵,停止順序與之相反。上位監控管理計算機可遠程監測污泥脫水系統全部設備的運行狀態和故障報警,但不可遠程控制污泥脫水系統的開停。
3.10 加氯的自動控制
根據進水流量和濁度控制加氯機按比例自動加氯,并根據出水余氯值進一步修正加氯量,使加氯量始終處于最佳值。
3.11 電動閘門的控制
重要的電動閘門,旁邊設置的現場手動操作箱面板上設手動/遠動轉換開關。手動狀態下,由操作箱面板上的按鈕控制閘門的開閉;遠動狀態下,由中控室遙控閘門的開閉。閘門的狀態和工況在中控室的模擬屏上顯示。
4.結束語
污水處理運行過程任務要求重,特性復雜,運行管理難度大,目前水處理行業尚缺乏可靠的實時監測儀器,用傳統的控制方式往往達不到精確的控制要求。先進控制理論實現了過程工藝參數的優化,可以改變污水處理廠人工調節操作處理不及時、效率低的現狀。污水處理的社會意義巨大應用計算機控制技術實現污水處理工藝的半自動全自動控制提高污水處理的技術管理水平合理使用和配置處理設施設備具有非常現實的意義。
參考文獻:
長久以來,對電廠有關機組控制工作中,使用的主要控制方式就是PID,但是PID控制器在實際工作的過程中,各類參數整定途徑不同,有些方式需要進行理論計算,有些方式則需要依靠經驗來進行,加上很多常規PID控制難以收到到良好的控制效果,這就需要工作人員不斷的分析控制技術。就現階段來看,我國關于智能控制的研究還相對較少,這種智能控制方式也是業界的一個新型研究范疇,智能控制技術的發展可以為電廠熱工自動化提供完善的理論指導,該種控制技術經過了神經網絡專家、模糊專家的深刻,證實是一種理想的控制策略。
2、智能控制技術的主要方式
2.1 模糊控制方式
模糊控制方式源自于1965年Zadeh教授的模糊集理論,在1974年,英國教授Mamdani成功的將模糊集理論應用在蒸汽機以及鍋爐的控制工作中,隨后的多年來,該種控制方式呈現出一種良好的發展態勢,也得到了十分廣泛的應用。該種理論基于人的思維模式發展而來。有關的研究調查顯示,模糊控制方式可以對數學模型對象進行精準的控制,模糊控制理論是以模糊語言、模糊數學知識來表示模糊規則的理論,并使用計算機技術控制閉環結構的控制系統。模糊控制方式具有幾個特點,即其控制系統的設計需要操作數據與人員的控制經驗,并不需要數學模型,因此,具有很好的魯棒性,能夠解決傳統PID難以解決的時變性、非線性以及時滯性,整個推理過程使用不精確推理的形式,能夠模仿人的思維,因此,可以處理十分復雜的系統。
2.2 專家控制方式
專家控制方式即將專家控制技術與理論的整合,在運行過程中,對專家的智能進行模仿,這樣即可實現系統控制,其主體主要包括推理機構與知識庫,通過對知識的組織與調動,按照既定的策略對規則進行推理的過程。專家控制方式具有靈活性高、空置率靈活的形式,能夠適應各種環境的變化。根據控制系統的復雜程度,專家控制方式包括專家式控制器與專家控制系統兩種方式,這兩種方法均具有完善的結構系統、知識處理功能以及可靠功能,也得到了廣泛的應用。
3、智能控制在電廠熱工自動化的應用
電廠熱工自動化是減輕勞動強度、改善勞動條件、保證設備安全的技術措施,智能控制在電廠熱工自動化的應用已經成為研究的熱點問題之一。
3.1 單元機組負荷控制
單元機組負荷控制系統是一種具備時變性、非線性以及不確定性的多變量系統,難以建立精確的數學模型,采取傳統的控制系統很難收受到既定的效果。有關專家學者針對該種情況設置了以機跟爐與以爐跟機為基礎的負荷控制系統,效果顯示,這兩種系統有著良好的控制品質以及自適應能力。
3.2 過熱汽溫控制
過熱汽溫是電廠鍋爐在運行過程中的運行質量評價標準之一,就目前來看,一般使用改變減溫水量的控制方式,這種控制方式在實際的應用過程中表現出較大的時滯性與慣性,在科技水平的發展下,人們也將智能控制系統引進汽溫控制過程中,很好的改善了控制系統的品質與適應性。有關的文獻顯示,將神經網絡模糊控制系統引入過熱汽溫控制過程中,即時在大范圍變負荷運行的過程中,整個系統依然能夠保持良好的運行態勢與運行性能,也可以很好的解決電廠過熱汽溫控制對象的不穩定性與延遲性。
3.3 中儲式制粉系統的控制
中儲式制粉系統的控制難點包括磨負荷信號測量的復雜性、參數之間的耦合性、數學模型的復雜性等等,有關的專家針對這一特征,使用模糊語言規則,總結好運行經驗,使用預測模糊控制與分級模糊控制相結合的方式,在電廠磨球機中進行了應用,運行效果顯示,使用預測模糊控制與分級模糊控制相結合的方式,可以很好的提升磨機運行的安全性與穩定性,也很好的解決了磨機運行過程中的大時滯的耦合問題,提升了電廠的經濟效益與社會效益。
3.4 給水加藥的控制
電廠鍋爐給水加藥一般為加氨與聯氨,加氨目的是為了提升給水PH值與凝結水PH值,并減少酸性物質對水系統產生的腐蝕。加聯氨的目的是為了去除水中的氧與二氧化碳,防止鍋爐中鐵垢與銅垢的生成。影響給水加藥的因素很多,水處理工況、鍋爐蒸發量都會對其產生一定的影響,因此,傳統的PID往往難以實現目標調節效果。使用變頻模糊加藥系統可以很好的克服人工加藥系統中存在的不足,也可以很好的提升給水的質量,具有動態響應快、魯棒性強的優點,取得了良好的經濟效益。
4、結語
可以說,智能控制系統可以很好的解決傳統系統不確定性、復雜性以及高度非線性的不足之處,智能控制系統在電廠熱工自動化中的應用已經取得了良好的效益,在未來,也有著良好的應用前景,相信隨著基礎理論的發展與應用方法的成熟,智能控制系統將會得到更加完善的發展,電廠熱工自動化水平也會得到不斷的提升。
參考文獻:
[1]孟麗榮.關于智能控制在電廠熱工自動化中的應用[期刊論文].中國新技術新產,2012,12(25).
[2]張擁軍.優化火電廠自動控制系統的重要性及對策[期刊論文].中國集體經濟. 2009(10).
中圖分類號:TP2 文獻標識碼:A 文章編號:1007-3973(2011)004-102-02
在當今自動控制系統已經滲透到各個領域,但隨著生產工藝和生產要求的不斷提高,這樣對自動控制技術也有著相應的提高,傳統的方法已經不在滿足其現代生產的要求,這樣MATALAB仿真技術相應產生,而且越來越多的應用在自動控制系統中。下面從以下幾個方面去介紹其在控制系統的應用。
1 在經典控制的應用
我們知道雖然現代控制方法和控制技術不斷的發展,但是我國的很多廠家的生產中均采用的是經典PID的控制方法,經典PID有著控制簡單,快速等優點,但是要想采用PID算法必須要先確定控制對象的數學模型,而確定數學模型有兩種方法:一種是機理建模而另外一種是實驗建模,但是第一種方法雖然建立數學模型比較準確,但是在實際工況中機理建模實際很難用到的,因為實際工況中工藝很復雜,并且被控對象會隨著環境的改變而改變,通常會才用第二種實驗建模,實驗建模是要描繪出被控對象的輸出曲線,以前被控對象的輸出曲線很難描繪,隨著MATLAB仿真技術的應用這種問題迎刃而解了,比如在電阻爐溫度控制中,就得用MATLAB仿真技術建立電阻爐的數學模型。電阻爐是一純滯后一階對象,其傳遞函數為W0(s)=Y(s)/C(s)=Ketos/I+TS其飛升曲線如圖所示:
K=輸出穩態值,初始值/240=158-13/240=0.6
TO與τ按工程計算法求得取
tl=τ+T0/3
t2=τ+TO
其中t1、t2分別對應階躍響應的穩態值的28%和 63%的時間
t1=24 τ=5 t2=62 TO=57
這樣確定電阻爐的數學模型就迎刃而解了。
2 在經典控制理論計算的應用
在經典控制系統中,頻率分析和時域分析對系統都很重要。但對于二階的系統人手算的工作量還不大,但超過二階以上的系統用人工計算就非常繁復了,這樣必須通過MATA,LB仿真來完成例如:
某系統的開環傳函為G(S)=20/S3+8S3+36S+40求該系統的響應和波特圖。
綜上所述,隨著MATALB仿真技術的不斷發展,會大大促進控制系統的發展并上一個新的臺階的。
【關鍵詞】 控制網絡;現場總線;ControlNet;以太網;交換式;共享式;
【論文類型】 應用基礎
:49000多字的碩士論文
隨著我國紡織工業持續快速的發展,現代紡織技術將以電子信息技術為主導,以智能化生產為主要特征,進入90年代以來,現場總線技術以及基于該技術的控制系統在國內外引起人們高度重視,成為世界范圍內的自動化技術發展的熱點,它綜合運用了微處理器技術、網絡技術、通信技術和自動控制技術,將微處理器置入現場自控設備,在沒有人的直接參與下,機器設備或生產治理過程通過自動檢測、信息處理、分析判定自動地實現預期的操作或某種過程。對工業生產過程實現檢測、控制、優化、調度、治理和決策,達到增加產量、提高質量、降低消耗和確保安全等目的。論文參考網。正是由于自動化技術在紡織工業上的廣泛應用,推動著紡織新工藝、新技術的不斷成熟和推廣,日益改變著世界紡織工業的生產技術面貌。
一、基于現場總線技術的紡織生產控制系統
現場總線是當今3C(Computer、Communication、Control)技術發展的結合點,也是過程控制技術、自動化儀表技術和計算機網絡技術發展的交匯點,是信息技術、網絡技術的發展在控制領域的集中體現,是信息技術、網絡技術延伸到現場的必然結果。紡織工業的信息化建設是未來幾年紡織工廠的追求和建設重點,而數字化的紡織生產體系正是其不可或缺的基礎。它將全面提升紡織工廠的管理水平,對工廠的技術、質量、經濟和服務推動的進步都將產生直接的明顯的推進作用。
數字化的紡織機械采用現代先進的控制技術:以CPU為核心的控制器,以電力電子技術為基礎的新型驅動技術,以現場總線技術為代表的網絡及高速數據通訊技術。實現數據的實時準確采集和高速傳輸,實現分布式、現場化和抗干擾性能的提高,實現生產過程的自動化、智能化,完成紡織機械與現代先進控制技術的結合,為紡織企業的信息化從設備層打下堅實的基礎。
現場總線控制層是各種生產信息的來源。各種棉紡、織造、印染機械的控制器只要具有現場總線通訊接口,通過適當的編程,就可以將機械的運行數據實時傳送到監控系統。現場總線監控層完成車間級設備檢測和控制。應用組態軟件編程和現場總線網絡,整合車間內各個單臺機械設備控制系統,以清晰友好的人機界面實現全車間設備的生產狀態、產量、效率的監視,同時還可以對設備的工藝參數進行統一設置,故障報警、參數記錄、顯示歷史趨勢和實時曲線,生成和打印各種生產報表。管理層是工廠級的信息管理系統。控制系統均可以按照用戶的需求,通過多種總線、工業網絡建立數據庫,對數據進行處理并分類送到各個管理部門,實現數據的查詢、統計、分析和數據報表。現場總線信息層將控制過程、信息管理、通信網絡融為一體,實現數據共享,有關人員登陸到Web服務器,就可根據各自的權限監控到生產現場的設備的運行情況。
二、PLC、變頻器、人機界面三大自動化產品大量應用
PLC、變頻器、人機界面三大主要自動化產品的應用面已經覆蓋到我國紡織機械行業的紡紗設備、織造設備、非織造布設備、染整設備、化纖設備等絕大多數設備領域,用于構成紡織機械設備的控制系統。近年來紡織機械每年新機配套用的三大自動化產品需求量均已達到相當的規模:變頻器的主機配套用量約為15萬臺以上,如果再加上紡織企業的老機改造和公用工程的需求,整個紡織機械行業變頻器的年需求量約為20萬臺以上;PLC的主機配套用量約在7萬套以上,整個紡織機械行業的年需求量在10萬套以上;人機界面是PLC的“姊妹產品”,一般情況下,采用PLC的設備必用人機界面,因此其年需求量接近于PLC,目前紡織機械正在逐步以觸摸屏人機界面替代文本式人機界面。
三、單軸驅動、多電機同步傳動技術得到廣泛應用
紡織機械行業機電一體化的主要技術特點就是單軸驅動和多電機同步傳動技術,目前該技術已經廣泛應用于我國紡機的整個領域。這項技術的應用使得機械結構簡化、工藝調整方便,可以充分滿足工藝對設備的要求,同時適應高品質、多品種、小批量的市場需求。具有代表性的紡織機械如粗紗機,國內各紡織機械廠均推出四軸單獨驅動的新型粗紗機,已成為粗紗機競爭的技術標志;又如國內各紡織機械廠推出了七軸單獨驅動的漿紗機,該機實現了對紗線伸長率、卷繞張力等工藝參數的精確控制,為后道工序提高無梭織機織造效率創造了有利條件。
四、過程控制技術應用逐步深入
4.1自動化技術應用于清梳聯設備,保證了成紗質量和穩定性
國產清梳聯設備配用的高產梳棉機采用混合環控制,對喂入棉層的厚度進行檢測,控制短片段不勻;采用喇叭口壓力檢測或采用凹凸羅拉、階梯羅拉檢測輸出棉條的粗細,控制長片段不勻。論文參考網。兩處檢測到的信號,送入控制器經計算機運算,控制給棉羅拉的速度,達到自調勻整的目的。清梳聯單機和全流程采用的光電檢測、壓力傳感、位移傳感、信號轉換、伺服系統控制、計算機處理、變頻凋速、自調勻整、計算機綜合監控等技術提高了全流程運行的穩定性、可靠性,保證了全流程連續、同步、平穩運行,使輸出棉條長片段、超長片段、甚至短片段的均勻度都能穩定在一定范圍內,從而保證了成紗質量和穩定性。
4.2自動化技術應用于并條工序,穩定了棉條支數
國外產的RSB-D30型并條機及HSR-1000機,除配有開環或閉環自調勻整裝置以外,還配有質量監控系統,發生質量超限故障立即停車報警,自調勻整裝置很靈敏,傳感器對棉條發生的探測信號可保持每1.5~4mm勻整一次,這相對于高速并條機,單位時間里控制頻率很高,勻整頻率達毫秒級,因此棉條均勻質量高,可將土25%的棉條均整到土1%以內。這種并條機生產的棉條不必再由試驗室控制支數偏差,因此在組成新的轉杯紡工藝過程中可不再考慮棉條重量偏差的離線檢測試驗。
4.3自動化技術應用粗紗機,改善粗紗條干水平
新型的粗紗機均由計算機控制多臺變頻器,交流伺服驅動器,再分別控制多臺電動機的同步傳動系統,從而簡化了復雜的機械結構,取消了錐輪變速裝置、三自動成形機構、計長裝置等。利用計算機儲存多品種的最佳工藝,更換品種十分方便;采用傳感技術,檢測紗線張力,通過計算機實現張力控制;采用計算機軟件來完成粗紗的卷繞成形功能和實現經軸、織軸的理想卷繞,使機構簡化,操作方便,性能改善,質量提高,提升了設備的檔次和水平。
4.4自動化技術應用于環錠紡紗系統,使之向全流程連續化生產發展
自動化程度的不斷發展,使環錠紡紗技術進入了新的發展階段。有些機型將檢測結果通過變頻調速直接改變工藝參數,簡化了機械結構,有的機型通過檢測、顯示還能直接勻整輸出紗條的質量。操作自動化發展到了更高的水平,自動清潔、自動調速、定位停車、自動落卷、自動落紗、自動換筒、自動接頭、自動排除落棉等等,凡是需要人工操作的部位和動作,都盡可能地實現機器自動操作。不僅減少了操作治理人員,減輕了勞動強度,提高了勞動生產率,更為重要的是,由機器代替手工操作,消除了人為因素對生產的影響,提高了操作的可靠性和穩定性,因而保證了產品質量。論文參考網。在大幅度提高單機生產水平和操作自動化的基礎上,環錠紡紗正向全流程連續化生產發展。
4.5新型氣流紡紗機已基本上實現了生產自動化
微機控制的紡紗系統可以自動檢測、顯示各種生產參數并自動打印。可以自動檢測和記錄紗線條干,并能超限自停,能按設定要求自動控制紡紗長度。還設有接頭質量自動檢測裝置,號稱無疵點接頭。此外,如紡杯自動清潔、自動落筒、防疊裝置、上臘裝置、機臺自動啟動裝置等都有利于提高產品質量,方便操作治理,提高勞動生產率。
4.6自動化技術應用于無梭織機,實現織造生產自動化
自動化技術的推廣應用,使無梭織機的技術水平和品種適應性不斷創造新水平,使織機操作實現了自動化,如開關車的程序控制,定期自動加油,利用微機自動收集、顯示織機的各種生產參數和運行情況,包括速度、產量、效率、停臺及原因分析、織軸經紗存量、在機織物卷裝等等,因而提高了治理水平,提高了生產效率;電子送經和電子卷取組成了經紗張力的自動控制,基本上消除了緯向疵點;電子選色,微機自動變換織紋組織,集中改變織物圖形,通過單機和中心控制臺的雙向通訊還能實現群控;有些機型還能自動排除緯向疵點。
中圖分類號:G642 文獻標識碼:A 文章編號:1007-0079(2014)21-0042-02
控制理論是自動化及其相關專業的一門重要核心專業基礎課程,在武漢理工大學華夏學院(以下簡稱“我院”)自動化專業,控制理論所授主要內容為以經典控制論為核心的“自動控制原理”和以卡爾曼的狀態空間分析法為核心的“現代控制理論”。
其中,“自動控制原理”是研究控制系統的一般規律,并為系統的分析和綜合提供基本理論和方法的專業基礎核心課程。該課程又是“現代控制理論”“過程控制系統”“運動控制系統”“計算機控制技術”“智能控制”等許多后續課程的基礎。而作為其后續課程的“現代控制理論”仍作為碩士研究生“線性系統理論”與“最優控制”等學位課程的基礎。這兩門課程理論性強,概念多且雜,對學生的數學基礎要求較高。而我院作為一個三本院校,自動化專業的學生相比較一本和二本的學生而言,數學基礎較為薄弱,故學好這兩門課對學生來說至關重要且具有一定的難度。
而教好上述兩門課程也是教師必須思考和解決的重要問題。筆者經過幾年的教學實踐,摸索出一套比較適合三本院校學生的系統化教學方法,致力于培養學生的系統觀,進行了一些嘗試,且取得了一定的效果。
一、工程背景系統性
任何一種理論的產生都有其歷史背景,都是在實踐中產生的。自動控制技術萌芽在18世紀,在第一次世界工業革命期間,自動控制技術逐漸應用到現代工業中。其中最卓越的代表是瓦特(J.Watt)發明的蒸汽機離心調速器,一種憑借直覺的實證性發明。飛球調節器有時使蒸汽機速度出現大幅度振蕩,其他自動控制系統也有類似現象。
由于當時還沒有自控理論,所以不能從理論上解釋這一現象。為了解決這個問題,盲目探索了大約一個世紀之久。1868年英國麥克斯韋爾的“論調速器”論文指出:不應單獨研究飛球調節器,必須從整個系統分析控制的不穩定。麥克斯韋爾的這篇著名論文被公認為自動控制理論的開端,接著就進入了經典控制理論發展的孕育期。1875年,英國勞斯提出代數穩定判據。1895年,德國赫爾維茲提出代數穩定判據。1892年,俄國李雅普諾夫提出穩定性定義和兩個穩定判據。1932年,美國奈奎斯特提出奈氏穩定判據。戰中自動火炮、雷達、飛機以及通訊系統的控制研究直接推動了經典控制的發展。1948年,維納出版《控制論》,形成完整的經典控制理論,標志控制學科的誕生。維納成為控制論的創始人。
經典控制理論的主要內容包括:系統數學模型的建立、時域分析法、頻率特性法、根軌跡法、系統綜合與校正、非線性系統和采樣控制系統分析法等。
從四十年代到五十年代末,經典控制理論的發展與應用使整個世界的科學水平出現了巨大的飛躍,幾乎在工業、農業、交通運輸及國防建設的各個領域都廣泛采用了自動化控制技術(可以說工業革命和戰爭促使了經典控制理論的發展)。科學技術的發展不僅需要迅速地發展控制理論,而且也給現代控制理論的發展準備了兩個重要的條件――現代數學和數字計算機。現代數學,例如泛函分析、現代代數等,為現代控制理論提供了多種多樣的分析工具;而數字計算機為現代控制理論發展提供了應用的平臺。[1]
在二十世紀五十年代末,計算機技術的飛速發展推動了核能技術、空間技術的發展,并且為多輸入多輸出系統、非線性系統和時變系統的分析和設計提供了新的手段。
五十年代后期,貝爾曼(Bellman)等人提出了狀態分析法,在1957年提出了動態規劃。1959年卡爾曼(Kalman)和布西創建了卡爾曼濾波理論;1960年在控制系統的研究中成功地應用了狀態空間法,并提出了可控性和可觀測性的新概念。
由上面的歷史背景介紹可以看出,現代控制理論是在自動控制理論的基礎上發展得到的,盡管兩種理論在方法和思路上有顯著的不同,但是在教授的時候不能將兩者視為單獨的個體。筆者每次在緒論部分都會系統化地講解理論的產生,以讓學生對兩門課程形成一個初步的比較清晰的認識。
二、理論教學的系統性
在這兩門課程的理論教學過程中,雖然涉及到的知識點有差異,但是經筆者研究,在具體教學中,兩門課程的教學有些許共性,比如說兩門課程的教學流程就基本一致。如圖1所示:相對于現代控制原理而言,自動控制原理理論推導較少,同時其工科背景較強,實例較多。在學習之初,可先幫助學生搭建起分析問題和解決問題的基本框架,形成一個較為初步的系統觀。
自動控制原理分析問題的核心是數學建模,穩定性判斷和性能指標的計算,[2]主要分析方法是時域分析法、頻域分析法和根軌跡分析法。時域分析法直觀易懂,頻域分析法是自動控制原理的核心,根軌跡分析法在目前的工程實踐中已用的很少,在學時有限的情況下可略講。在實際講解的過程中,要合理安排學時,適當加快時域分析法的講授,略講根軌跡分析法,重點講解頻域分析法及系統校正。
現代控制理論包含了大量的理論概念機數學公式,在實際講授中,應弱化理論推導,在教學過程中可結合倒立擺工程實例,從建模、穩定性分析、能控能觀性分析、極點配置到狀態反饋,形成一個較為完整的分析過程。[3]
總而言之,在講解的過程中,注重引言,初步建立系統觀,結合實例,比較異同,突出重難點,最后再通過總結強化各知識點之間的聯系。[4]
三、實踐教學的系統性
1.重視實驗,理論教學和實驗教學的系統化[5]
以往,控制理論的實驗課和理論課教學是獨立的,理論課教師和實驗課教師各行其道,相互交流匱乏。目前,學院已明確提出,理論課教學和實驗課教學的一致性,理論課教師必須參與進實驗教學,教學手段要豐富、系統。
2.實驗箱教學和仿真教學的系統化
首先在實驗箱上搭建模擬電路,利用信號發生器、示波器等測量波形和數據。同時引入MATLAB仿真,先引出數學模型,利用MATLAB強大的系統工具箱分析并繪制各種相應曲線,利用Simulink工具箱進行校正和狀態反饋設計。[6]最后,對比電路測試波形和仿真結果,可讓學生深入了解理論和實際參數之間的差異,進而尋找原因,加深理解。
四、今后教學方向
在今后的教學過程中,可進一步加強比較,加強學生的系統觀,并且嘗試遷移到其他相關學科,加強學生對整個學科的理解。
參考文獻:
[1]萬雄波,楊方.基于“自動控制原理”與“現代控制理論”課程異同點分析的教學探索[J].科教文匯,2013,(7):56-57.
[2]孫韻鈺.“相似論”在“自動控制理論”課程教學中的運用[J].消費電子,2013,(7).
[3]王斌,李斌.“現代控制理論”教學改革與實踐[J].中國電力教育,2013,(10):61-62.
不斷發展的現代科學技術推動了不同學科的交叉與滲透;推動了工程領域的技術改造與革命;推動了機械工業的技術結構、產品結構、功能與構成、生產方式及管理體系發生巨大變化;推動了工業生產由“機械電氣化”邁入以“機電一體化”為特征的發展階段。機電一體化是指在機構的主功能、動力功能、信息處理功能和控制功能上引進電子技術,將機械裝置與電子化設計及軟件結合起來所構成的系統的總稱。
一、機電一體化的核心技術
機電一體化是從系統的觀點出發,綜合運用機械技術、計算機技術與信息技術、系統技術、自動控制技術、傳感檢測技術及伺服傳動技術,根據系統功能目標要求,合理配置與布局各功能單元,在多功能、高質量、高可靠性、低能耗的意義上實現特定功能價值,并使整個系統最優化的系統工程技術。
1、機械技術:是機電一體化的基礎,機械技術的著眼點在于如何與機電一體化技術相適應,利用其高、新技術來更新概念,實現結構上、材料上、性能上變更,滿足減小重量、縮小體積、提高精度、提高剛度及改善性能要求。
2、計算機與信息技術:其中信息交換、存取、運算、判斷與決策、人工智能技術、專家系統技術、神經網絡技術均屬于計算機信息處理技術。
3、系統技術:即以整體概念組織應用各種相關技術,從全局角度和系統目標出發,將總體分解成相互關聯的若干功能單元,接口技術是系統技術中一個重要方面,是實現系統各部分有機連接的保證。
4、自動控制技術:其范圍很廣,在控制理論指導下,進行系統設計,設計后的系統仿真,現場調試,控制技術包括如高精度定位控制、速度控制、自適應控制、自診斷校正、補償、再現、檢索等。
5、傳感檢測技術:傳感檢測技術是系統的感受器官,是實現自動控制、自動調節的關鍵環節。其功能越強,系統的自動化程序就越高。
6、伺服傳動技術:包括電動、氣動、液壓等各種類型的傳動裝置,伺服系統是實現電信號到機械動作的轉換裝置與部件、對系統的動態性能、控制質量和功能有決定性的影響。
二、機電一體化的發展過程
機電一體化的發展過程大體可以分為三個階段
1、初級階段
20世紀60年代以前為第一階段,也稱為初級階段。論文大全。在這一時期,人們自覺不自覺地利用電子技術的初步成果來完善機械產品的性能。特別是在第二次世界大戰期間,戰爭刺激了機械產品與電子技術的結合,這些機電結合的軍用技術,戰后轉為民用,對戰后經濟的恢復起到了積極的作用。那時,研制和開發從總體上看還處于自發狀態。由于當時電子技術的發展尚未達到一定水平,機械技術與電子技術的結合還不可能廣泛和深入發展,已經開發的產品也無法大量推廣。
2、高速發展階段
20世紀70—80年代為第二階段,也稱為高速發展階段。這一時期,計算機技術、控制技術、通信技術的發展,為機電一體化的發展奠定了技術基礎。大規模、超大規模集成電路和微型計算機的出現,為機電一體化的發展提供了充分的物質基礎。這個時期的特點是:mechatronics一詞首先在日本被普遍接受,大約到20世紀80年代末期在世界范圍內得到比較廣泛的承認;機電一體化技術和產品得到了極大發展;各國均開始對機電一體化技術和產品給予很大的關注和支持。
3、智能化階段
20世紀90年代后期,開始了機電一體化技術向智能化方向邁進的新階段,機電一體化進入深入發展時期。一方面,光學、通信技術等進入機電一體化,微細加工技術也在機電一體化中嶄露頭腳,出現了光機電一體化和微機電一體化等新分支;另一方面,對機電一體化系統的建模設計、分析和集成方法,機電一體化的學科體系和發展趨勢都進行了深入研究。同時,人工智能技術、神經網絡技術及光纖技術等領域取得的巨大進步,為機電一體化技術開辟了發展的廣闊天地。這些研究,使機電一體化進一步建立了堅實的基礎,并且逐漸形成完整的學科體系。
三、機電一體化的發展趨勢
機電一體化是集機械、電子、光學、控制、計算機、信息等多學科的交叉綜合,它的發展和進步依賴并促進相關技術的發展。機電一體化的主要發展方向大致有以下幾個方面。
1、智能化
智能化是21世紀機電一體化技術發展的一個重要發展方向,是在控制理論的基礎上,吸收人工智能、運籌學、計算機科學、模糊數學、心理學、生理學和混沌動力學等新思想、新方法,模擬人類智能,使它具有判斷推理、邏輯思維、自主決策等能力,以求得到更高的控制目標。
2、網絡化
20世紀90年代,計算機技術等的突出成就是網絡技術。機電一體化新產品一旦研制出來,只要其功能獨到,質量可靠,很快就會暢銷全球。因此,機電一體化產品無疑將朝著網絡化方向發展。
3、微型化
興起于20世紀80年代末,指的是機電一體化向微型機器和微觀領域發展的趨勢。國外稱其為微電子機械系統(MEMS),泛指幾何尺寸不超過1立方厘米的機電一體化產品,并向微米、納米級發展。微機電一體化產品體積小、耗能少、運動靈活,在生物醫療、軍事、信息等方面具有不可比擬的優勢。微機電一體化發展的瓶頸在于微機械技術。微機電一體化產品的加工采用精細加工技術,即超精密技術,它包括光刻技術和蝕刻技術兩類。
4、綠色化
工業的發達給人們生活帶來巨大變化。一方面,物質豐富,生活舒適;另一方面,資源減少,生態環境受到嚴重污染。于是,人們呼吁保護環境資源,回歸自然。綠色產品概念在這種呼聲下應運而生,綠色化是時代的趨勢。綠色產品在其設計、制造、使用和銷毀的生命過程中,符合特定的環境保護和人類健康的要求,對生態環境無害或危害極少,資源利用率極高。設計綠色的機電一體化產品,具有很好的發展前景。機電一體化產品的綠色化主要是指,使用時不污染生態環境,報廢后能回收利用。論文大全。論文大全。
5、系統化
系統化的表現特征之一就是系統體系結構進一步采用開放式和模式化的總線結構。系統可以靈活組態,進行任意剪裁和組合,同時尋求實現多子系統協調控制和綜合管理。表現之二是通信功能的大大加強。一般除RS232外,還有RS485等智能化通信接口。
綜上所述,機電一體化的出現不是孤立的,它是許多科學技術發展的結晶,是社會生產力發展到一定階段的必然要求和產物。當然,與機電一體化相關的技術還有很多,并且隨著科學技術的發展,各種技術相互融合的趨勢將越來越明顯,機電一體化技術的發展與應用也將更加廣闊。
【參考文獻】
[1]王靜 淺析機電一體化技術的現狀和發展趨勢 同煤科技 2006、(4)
[2]石美峰 機電一體化技術的發展與思考 山西焦煤科技 2007、(3)
[3]李建勇 機電一體化技術北京科學出版社 2004、